Advertisement

Intrinsic Josephson effects in layered superconductors

  • P. Müller
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 34)

Abstract

The large anisotropy and the extremely short coherence lengths of the high-Tc superconductors suggest that the layered crystal structure is mapped onto a periodic modulation of the superconducting order parameter. Even an ideal single crystal should consist of a stacked series of superconducting and non-superconducting layers. Three-dimensional phase coherence is provided by Josephson currents between the layers. As the typical interlayer distance is approximately 15 Å, a single crystal of 3 μm thickness should behave like a stack of 2000 Josephson junctions. This hypothesis is proved in every detail by measurements of the DC as well as the AC Josephson effects on single crystals of Bi2Sr2CaCu2O8, (Bi1−y Pby)2Sr2CaCu2O8, Tl2Ba2Ca2Cu3O10 and Pr2−x CexCuO4. Microwave emission experiments at frequencies between 3.5 and 95 GHz reveal explicitly the number of junctions in the samples. This number is given by the crystal thickness divided by 15 Å, i.e. every pair of CuO2 bilayers forms a Josephson junction.

Similar results, including microwave emission, have been obtained very recently on single crystals of the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. This observation supports the conclusion that in any layered superconductor with sufficiently high anisotropy the superconducting order parameter is spatially inhomogeneous a priori.

The modulation of superconductivity on an atomic scale opens up a new application: the crystals by themselves are superconducting devices without the need of artificial treatments. The basic unit of those devices is a cell with the dimensions of the Ginzburg-Landau coherence length parallel to the layers and the interlayer distance i.e. a cube with 15·15·153 which contains only 150 atoms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    W. Meißner, R. Ochsenfeld, Naturwissenschaften 21, 787 (1933)CrossRefADSGoogle Scholar
  2. [2]
    R. Doll, and M. Näbauer, Phys. Rev. Lett. 7, 51 (1961)CrossRefADSGoogle Scholar
  3. [3]
    B. D. Josephson, Phys. Lett. 1, 251 (1962)zbMATHCrossRefADSGoogle Scholar
  4. [4]
    C. E. Gough, Nature 326, 855 (1987)CrossRefADSGoogle Scholar
  5. [5]
    M. J. Naughton, R. C. Yu, P. K. Davies, J. E. Fisher, R. V. Chamberlin, Z. Z. Wang, T. W. Jing, N. P. Ong, P. M. Chaikin, Phys. Rev. B38, 9280 (1988)CrossRefADSGoogle Scholar
  6. [6]
    P. Schmitt, P. Kummeth, L. Schultz, G. Saemann-Ischenko, Phys. Rev. Lett. 67, 267 (1991)CrossRefADSGoogle Scholar
  7. [7]
    R. Marcon, E. Silva, R. Fastampa, M. Giura, Phys. Rev. B46, 3612 (1992)CrossRefADSGoogle Scholar
  8. [8]
    A. V. Samoilov, A. A. Jurgens, N. V. Zavaritsky, Phys. Rev. B46, 6643 (1992)CrossRefADSGoogle Scholar
  9. [9]
    I. Bozovic, J. N. Eckstein, M. E. Klausmeier-Brown, G. F. Virshup, J. Superconductivity 5, 19 (1992)CrossRefADSGoogle Scholar
  10. [10]
    R. Kleiner, to be publishedGoogle Scholar
  11. [11]
    N. Takezawa, T. Koyama, M. Tachiki, Physica C 207, 231 (1993)CrossRefADSGoogle Scholar
  12. [12]
    W. E. Lawrence, S. Doniach, in Proceedings of the 12th International Conference on Low Temperature Physics, E. Kanda, ed., Academic Press, Kyoto (1971), S. 361Google Scholar
  13. [13]
    C. Allgeier, thesis, LMU München, 1990Google Scholar
  14. [14]
    K. Späth, F. Groß, C.-P. Heidmann, K. Andres, Ber. Bunsenges. Phys. Chem. 91, 909 (1987)Google Scholar
  15. [15]
    T. Staufer, R. Hackl, P. Müller, Solid State Commun. 75, 975 (1990) T. Staufer, R. Hackl, P. Müller, Solid State Commun. 79, 409 (1991) T. Staufer, R. Nemetschek, R. Hackl, P. Müller, and H. Veith, Phys. Rev. Lett. 68, 1069 (1992)CrossRefADSGoogle Scholar
  16. [16]
    N. Nücker, U. Eckem, J. Finck, P. Müller, Phys. Rev. B 44, 7155 (1991)CrossRefADSGoogle Scholar
  17. [17]
    A. Zibold, M. Dürrler, A. Gaymann, H. P. Geserich, N. Nücker, V. M. Burlatov, P. Müller, Physica C193, 171 (1992)CrossRefADSGoogle Scholar
  18. [18]
    F. X. R. gi, J. Schneck, H. Savary, C. Daguet, F. Huet, IEEE Transactions on Applied Superconductivity 3, 1190 (1993)CrossRefGoogle Scholar
  19. [19]
    G. Winkel, Universität Köln, private communication (1994)Google Scholar
  20. [20]
    P. Müller, K. Andres, F. Groß, H. Veith, R. Hackl, Physica C 153–155, 421 (1988) K. Schönmann, B. Seebacher, K. Andres, Physica B165 & 166, 1445 (1990)CrossRefGoogle Scholar
  21. [21]
    K. Winzer, G. Kumm, P. Maaß, H. Thomas, E. Schwarzmann, A. Aghaie, F. Ladenberger, Ann. Physik (Leipzig) 1, 479 (1992)CrossRefADSGoogle Scholar
  22. [22]
    M. Brinkmann, H. Somnitz, H. Bach, K. Westerholt Physica C217, 418 (1993)CrossRefADSGoogle Scholar
  23. [23]
    F. Baudenbacher, K. Hirata, H. Kinder, TU München, 1991Google Scholar
  24. [24]
    H. Müller, C.-P. Heidmann, D. Kellner, W. Biberacher, K. Andres, Synthetic Metals 39, 261 (1990)CrossRefGoogle Scholar
  25. [25]
    H. C. Montgomery, J. Appl. Phys. 42, 2971 (1971)CrossRefADSGoogle Scholar
  26. [26]
    F. Steinmeyer, R. Kleiner, P. Müller, H. Müller, K. Winzer, Europhys. Lett. 25, 459 (1994)CrossRefADSGoogle Scholar
  27. [27]
    R. Kleiner, F. Steinmeyer, G. Kunkel, P. Müller, Phys. Rev. Lett. 68, 2394 (1992), R. Kleiner, P. Müller, Phys. Rev. B49, 1327 (1994), see also refs. 25 and 28CrossRefADSGoogle Scholar
  28. [28]
    V. G. Kogan, Phys. Rev. B 38, 7049 (1988)CrossRefADSGoogle Scholar
  29. [29]
    R. Kleiner, P. Müller, H. Kohlstedt, N. F. Pedersen, S. Sakai, Phys. Rev. B 50 (Aug. 1994)Google Scholar
  30. [30]
    R. Kleiner, thesis, TU München, 1992Google Scholar
  31. [31]
    B. O. Wells, Z.-X. Shen, D. S. Dessau, W. E. Spicer, C. G. Olson, D. B. Mitzi, A. Kapitulnik, R. S. List, A. Arko, Phys. Rev. Lett. 65, 3056 (1990)CrossRefADSGoogle Scholar
  32. [32]
    V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 11, 104 (1963)CrossRefADSGoogle Scholar
  33. [33]
    R. Hackl. 1992, private communication and ref. 12Google Scholar
  34. [34]
    P. Pospischil, Diplomarbeit, TU München, 1993Google Scholar
  35. [35]
    C. Kreuzer, Diplomarbeit, TU München, 1993Google Scholar
  36. [36]
    B. Avenhaus, Diplomarbeit, TU München, 1993Google Scholar
  37. [37]
    G. Hechtfischer, Diplomarbeit, TU München, 1994 *** DIRECT SUPPORT *** A00AX034 00002Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • P. Müller
    • 1
  1. 1.Walther-Meißner-InstitutGarchingGermany

Personalised recommendations