Skip to main content

The structure of elemental and molecular clusters

  • Chapter
  • First Online:
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 24))

Abstract

In order to understand crystal growth on a microscopic level it is necessary to know the sequence of structures a cluster assumes as it evolves from a molecule into a crystal. Small clusters reconstruct every time a molecule is added. After reaching a critical size, clusters take on the structure of a bulk material and therefore might appropriately be called microcrystals. This paper reviews some of the recent work on the structure of clusters and microcrystals with various types of bonding; ionic, metallic, van der Waals, covalent and hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. R. Hoare and P. Pal, Adv. Phys. 20, 161 (1971); see articles in Proc. Int. Meeting on Small Particles and Inorganic Clusters, J. Physique, Suppl. C2 (1977), and Surface Sci. 106 (1981).

    Article  ADS  Google Scholar 

  2. P. A. Aannestad and E. M. Purcell, Ann. Rev. Astr. and Astrophys. 11, 309 (1973); D. R. Hoffmann, Adv. in Phys. 26, 129 (1977); Solid State Astrophysics, N. C. Wickramasinghe and D. S. Morgan, editors (D. Reidel, Publishing Company, Dordrecht-Holland, 1976).

    Article  ADS  Google Scholar 

  3. Growth and Properties of Metal Clusters, Applications to Catalysis and the Photographic Process. Jean Bourdon, Editor (Elsevier Scientific Publishing Company, Amsterdam, 1980).

    Google Scholar 

  4. T. H. James, ed., The Theory of the Photographic Process, 3rd ed. (The Macmillan Company, New York, 1966).

    Google Scholar 

  5. Conference on Cloud Physics and Atmospheric Electricity (American Meteorological Society, Boston, 1979).

    Google Scholar 

  6. T. P. Martin, Physics Reports 95, 167 (1983).

    Article  ADS  Google Scholar 

  7. K. Sattler, in: Festkörperprobleme (Advances in Solid State Physics), Vol. XXIII, 13, P. Grosse (ed.), Vieweg, Braunschweig 1983.

    Google Scholar 

  8. K. Sattler, J. Mühlbach, O. Echt, P. Pfau, and E. Recknagel, Phys. Rev. Lett. 47, 160 (1981).

    Article  ADS  Google Scholar 

  9. F. Honda, G. M. Lancaster, Y. Fukuda, and S. W. Rabelais, J. Chem. Phys. 69, 4931 (1978).

    Article  ADS  Google Scholar 

  10. J. Campana, G. M. Barlak, R. J. Colton, J. J. De Corpo, J. R. Wyatt, and B. I. Dunlap, Phys. Rev. Lett. 47, 1046 (1981).

    Article  ADS  Google Scholar 

  11. T. M. Barlak, J. E. Campana, R. J. Colton, J. J. De Corpo and J. R. Wyatt J. Chem. Phys. 85, 3840 (1981).

    Article  Google Scholar 

  12. T. M. Barlak, J. R. Wyatt, R. J. Colton, J. J. De Corpo, and J. E. Campana, J. Am. Chem. Soc. 104, 1212 (1982).

    Article  Google Scholar 

  13. T. M. Barlak, J. E. Campana, J. R. Wyatt, and R. J. Colton, J. Chem. Phys. 87 3441 (1983).

    Article  Google Scholar 

  14. W. Ens, R. Beavis, and K. G. Standing, Phys. Rev. Lett. 50, 27 (1983).

    Article  ADS  Google Scholar 

  15. T. P. Martin, to be published in Ber. Bunsenges. Phys. Chem.

    Google Scholar 

  16. T. P. Martin, J. Chem. Phys. 67, 5207 (1977); 69, 2036 (1978); 72, 3506 (1980).

    Article  ADS  Google Scholar 

  17. D. O. Welch, O. W. Lazareth, G. J. Dienes, and R. D. Hatcher, J. Chem. Phys. 64, 835 (1976); 68, 2159 (1978).

    Article  ADS  Google Scholar 

  18. T. P. Martin and A. Kakizaki, to be published in J. chem. Phys.

    Google Scholar 

  19. T. P. Martin and J. Diefenbach, J. Am. Chem. Soc. 106, 623 (1984).

    Article  Google Scholar 

  20. J. D. Bernal, Nature 185, 68 (1960); Proc. Roy. Soc. A280, 299 (1964).

    Article  ADS  Google Scholar 

  21. M. R. Hoare, Adv. Chem. Phys. 40, 49 (1979).

    Article  Google Scholar 

  22. R.-P. Pan and R. D. Etters, J. Chem. Phys. 72, 1741 (1980); E. E. Polymeropoulos and J. Brickmann, Chem. Phys. Lett. 96, 273 (1983).

    Article  ADS  Google Scholar 

  23. J. G. Allpress and J. V. Sanders, Aust. J. Phys. 23, 23 (1970).

    ADS  Google Scholar 

  24. J. J. Burton, J. Chem. Phys. 52, 345 (1970).

    Article  ADS  Google Scholar 

  25. A. L. Mackay, Acta Cryst. 15, 916 (1962).

    Article  Google Scholar 

  26. E. W. Becker, K. Bier, and W. Henkes, Z. Physik 146, 333 (1956).

    Article  ADS  Google Scholar 

  27. O. F. Hagena and W. Obert, J. chem. Phys. 56, 1793 (1972).

    Article  ADS  Google Scholar 

  28. O. Echt, K. Sattler, and E. Recknagel, Phys. Rev. Lett. 47, 1121 (1981).

    Article  ADS  Google Scholar 

  29. J. Gspann, Surf. Sci. 106, 219 (1981).

    Article  ADS  Google Scholar 

  30. R. G. Orth, H. T. Jonkman, D. H. Powell, and J. Michl, J. Am. Chem. Soc. 103, 6026 (1981).

    Article  Google Scholar 

  31. L. Friedman and R. J. Beuhler, J. Chem. Phys. 78, 4669 (1983).

    Article  ADS  Google Scholar 

  32. P. W. Stephens and J. G. King, Phys. Rev. Lett. 51, 1538 (1983).

    Article  ADS  Google Scholar 

  33. A. Ding and J. Hesslich, Chem. Phys. Lett. 94, 54 (1983).

    Article  ADS  Google Scholar 

  34. J. Farges, B. Raoult, and G. Torchet, J. Chem. Phys. 59, 3454 (1973).

    Article  ADS  Google Scholar 

  35. J. Farges, M. F. De Feraudy, B. Raoult, and G. Torchet, Surf. Sci. 106, 95 (1981).

    Article  ADS  Google Scholar 

  36. S.-S. Lin, Rev. Sci. Instrum. 44, 576 (1973).

    Article  Google Scholar 

  37. J. Q. Searcy and J. B. Fenn, J. Chem. Phys. 61, 5292 (1974).

    Article  ADS  Google Scholar 

  38. G. M. Lancaster, F. Honda, Y. Fukuda, and J. W. Rabalais, J. Am. Chem. Soc. 101, 1951 (1979).

    Article  Google Scholar 

  39. D. Dreyfuss and H. Y. Wachman, J. chem. Phys. 76, 2031 (1982).

    Article  ADS  Google Scholar 

  40. R. J. Beuhler and L. Friedman, J. Chem. Phys. 77, 2549 (1982).

    Article  ADS  Google Scholar 

  41. A. J. Stace and C. Moore, Chem. Phys. Lett. 96, 80 (1983).

    Article  ADS  Google Scholar 

  42. G. D. Stein and J. A. Armstrong, J. Chem. Phys. 58, 1999 (1973).

    Article  ADS  Google Scholar 

  43. B. N. Hale and P. L. M. Plummer, J. Atmos. Sci. 31, 1615 (1974).

    Article  ADS  Google Scholar 

  44. J. L. Kassner, Jr. and D. E. Hagen, J. Chem. Phys. 64, 1860 (1976).

    Article  ADS  Google Scholar 

  45. F. H. Stillinger and C. W. David, J. Chem. Phys. 73, 3384 (1980).

    Article  ADS  Google Scholar 

  46. P. M. Holland and A. W. Castleman, Jr., J. Chem. Phys. 72, 5984 (1980).

    Article  ADS  Google Scholar 

  47. H. Haberland, H. Langosch, E.-G. Schindler, and D. R. Worsnop, to be published in Ber. Bunsenges. Phys. Chem.

    Google Scholar 

  48. U. Even and J. Jortner, J. Chem. Phys. 78, 3445 (1983).

    Article  ADS  Google Scholar 

  49. A. J. Stace and C. Moore, J. Chem. Phys. 19, 3681 (1983).

    Google Scholar 

  50. J. M. Dartigues, A. Chambellan, and F. G. Gault, J. Am. Chem. Soc. 98, 856 (1976).

    Article  Google Scholar 

  51. R. C. Baetzold and J. F. Hamilton, Proc. Solid St. Chem. 15, 1 (1983).

    Article  Google Scholar 

  52. S. C. Richtsmeier, M. L. Hendewerk, D. A. Dixon, and J. L. Gole, J. Phys. Chem. 86, 3932 (1982).

    Article  Google Scholar 

  53. D. R. Salahub, NATO ASI—Impact of Cluster Physics in Materials Science and Technology, J. Davenas, ed., Nijhoff, The Hague, 1983.

    Google Scholar 

  54. D. R. Salahub and R. P. Messmer, Phys. Rev. B16, 2526 (1977).

    Article  ADS  Google Scholar 

  55. R. A. Chiles, C. E. Dykstra, and K. D. Jordan, J. Chem. Phys. 75, 1044 (1981).

    Article  ADS  Google Scholar 

  56. C. W. Bauschlicher, Jr. P. S. Bagus, and B. N. Cox, J. Chem. Phys. 77, 4032 (1982).

    Article  ADS  Google Scholar 

  57. G. Pacchioni and J. Koutecky, Chem. Phys. 71, 181 (1982).

    Article  Google Scholar 

  58. G. Pacchioni and J. Koutecky, J. Chem. Phys. 77, 5850 (1982).

    Article  ADS  Google Scholar 

  59. D. Plavsic, J. Koutecky, G. Pacchioni, and V. Bonacic-Koutecky, J. Phys. Chem. 87, 1096 (1983); P. Fantucci, J. Koutecky, and G. Pacchioni, to be published in J. Phys. Chem.

    Article  Google Scholar 

  60. R. O. Jones, J. Chem. Phys. 71, 1300 (1979); J. Harris and R. O. Jones, J. Chem. Phys. 68, 1190 (1978).

    Article  ADS  Google Scholar 

  61. J. Flad, H. Stoll, and H. Preuss, J. Chem. Phys. 71, 3042 (1979); J. Flad, G. Igel, M. Dolg, H. Stoll, and H. Preuss, Chem. Phys. 75, 331 (1983); M. P. Iniguez, C. Baladron, and J. A. Alonso, Surf. Sci. 127, 367 (1983).

    Article  ADS  Google Scholar 

  62. R. Car and J. L. Martins, Surf. Sci. 106, 280 (1981).

    Article  ADS  Google Scholar 

  63. M. Leleyter and P. Joyes, J. Physique 36, 343 (1975); J. Physique, Suppl. C2, 11 (1977).

    Article  Google Scholar 

  64. A. Hermann, S. Leutwyler, E. Schumacher, and L. Wöste, Helv. Chim. Acta 61, 452 (1978); A. Hoareau, B. Cabaud, and P. Melinon, Surf. Sci. 106, 195 (1981).

    Article  Google Scholar 

  65. T. P. Martin and J. Diefenbach, to be published.

    Google Scholar 

  66. K. Sattler, J. Mühlbach, and E. Recknagel, Phys. Rev. Lett. 45, 821 (1980).

    Article  ADS  Google Scholar 

  67. M. M. Kappes, R. W. Kunz, and E. Schumacher, Chem. Phys. Lett. 91, 413 (1982).

    Article  ADS  Google Scholar 

  68. S. J. Riley, E. K. Parks, C.-R. Mao, L. G. Pobo, and S. Wexler, J. Phys. Chem. 86, 3911 (1982).

    Article  Google Scholar 

  69. K. Kimoto and I. Nishida, J. Phys. Soc. Japan 42, 2071 (1977).

    Article  ADS  Google Scholar 

  70. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511 (1981); E. A. Rohlfing, D. M. Cox, and A. Kaldor, Chem. Phys. Lett. 99, 161 (1983).

    Article  ADS  Google Scholar 

  71. V. E. Bondybey and J. H. English, J. Chem. Phys. 74, 6978 (1981); 76, 2165 (1982).

    Article  ADS  Google Scholar 

  72. J. H. Gole, G. J. Green, S. A. Pace, and D. R. Preuss, J. Chem. Phys. 76, 2247 (1982).

    Article  ADS  Google Scholar 

  73. J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse, and R. E. Smalley, J. Chem. Phys. 78, 1627 (1983).

    Article  ADS  Google Scholar 

  74. For an interesting discussion of phosphorus containing clusters see, H. G. von Schnering, “Catenation of Phosphorus Atoms” in: Homoatomic Rings and Chains, edited by A. L. Rheingold (Elsevier, New York, 1977).

    Google Scholar 

  75. T. P. Martin, Solid State Comm. 47, 111 (1983); J. Chem. Phys. 80, 170 (1984).

    Article  ADS  Google Scholar 

  76. A. J. Apling, A. J. Leadbetter, and A. C. Wright, J. Non-Crystalline Solids 23, 369 (1977).

    Article  ADS  Google Scholar 

  77. M. F. Daniel, A. J. Leadbetter, A. C. Wright, and R. N. Sinclair, J. Non-Crystalline Solids 32, 271 (1979).

    Article  ADS  Google Scholar 

  78. R. J. Nemanich, G. A. N. Connell, T. M. Hayes, and R. A. Street, Phys. Rev. B 18, 6900 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Martin, T.P. (1984). The structure of elemental and molecular clusters. In: Grosse, P. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107443

Download citation

  • DOI: https://doi.org/10.1007/BFb0107443

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08030-3

  • Online ISBN: 978-3-540-75374-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics