Skip to main content

Theory of impurity states in semiconductors

  • Chapter
  • First Online:
Festkörperprobleme 15

Part of the book series: Advances in Solid State Physics ((ASSP,volume 15))

Abstract

We present a comprehensive theory for impurity states in semiconductors. We find that when “true” impurity potentials are employed, the effective-mass theory is valid only for substitutional impurities whose core is isoelectronic to the host-atom core (isocoric impurities) independently of whether the resulting level, is shallow or relatively deep. By formulating the problem in terms of pseudopotential theory we obtain a more general theory which is valid for non-isocoric impurities as well, and in, fact reduces to the “true”-potential formalism in the case of isocoric impurities. We are thus able to directly predict binding energies for a variety of shallow and deep impurities. The theory also supplies new physical understanding of the effectivemass concept and of the mechanisms that determine the binding energies of impurities. Finally, we discuss impurity-like localized states in semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review see Bassani, F., Iadonisi, G., and Preziosi, B., Reports on Progr. in Phys. 37, 1099 (1974). Also Ref. [2].

    Article  ADS  Google Scholar 

  2. Pantelides, S. T., Rev. Mod. Phys., to be published.

    Google Scholar 

  3. See e. g. Kukimoto, H., Henry, C. H., and Merritt, F. R., Phys. Rev. B 7, 2486 (1973); Jayson, J. S., Bachrach, R. Z., Dapkus, P. D., and Schumaker, N. E., Phys. Rev. B 6, 2357 (1972).

    Article  ADS  Google Scholar 

  4. Kohn, W., Solid State Phys. 5, 257 (1957).

    Article  Google Scholar 

  5. Bethe, H. A., “Theory of the Boundary Layer of Crystal Rectifiers” MIT Rad. Lab. Rep. 43-12, Nov. 23, 1942. At. that time donors were referred to as “donators”; see reference [2] for historical review.

    Google Scholar 

  6. Aggarwal, R. L., and Ramdas, A. K., Phys. Rev. 140, Al246 (1965).

    Article  ADS  Google Scholar 

  7. Onton, A., PhD thesis (Purdue University, 1967) (unpublished).

    Google Scholar 

  8. Aggarwal, R. L., Fisher, P., Mourzine, V., and Ramdas, A. K., Phys. Rev. 138, A882 (1965).

    Article  ADS  Google Scholar 

  9. Among others see: Kittel, C., and Mitchell, A. H., Phys. Rev. 96, 1488 (1954); Luttinger, J. M., and Kohn, W., Phys. Rev. 97, 869 (1955).

    Article  ADS  Google Scholar 

  10. Phillips, J. C., Phys. Rev. B 1, 1540 (1970); ibid, Phys. Rev. B 1, p. 1545.

    Article  ADS  Google Scholar 

  11. Reiss, H., J. Chem. Phys. 25, 681 (1956); Kaus, P. E., Phys. Rev. 109, 1944 (1958).

    Article  ADS  Google Scholar 

  12. Müller, A. M. K., Solid State Commun. 2, 205 (1964); Z. Naturforschg. 20a, 1476 (1965).

    Article  ADS  Google Scholar 

  13. Breitenecker, M., Sexl, R., and Thirring, W., Z. Physik 182, 123 (1964).

    Article  MATH  ADS  Google Scholar 

  14. Weinreich, G., J. Phys. Chem. Solids 9, 216 (1959); Shinohara, S., Nuovo Cim. 22, 18 (1961).

    Article  ADS  Google Scholar 

  15. Csavinsky, P., J. Phys. Chem. Solids 24, 1003 (1963); J. Phys. Soc. Japan 20, 2027 (1965).

    Article  ADS  Google Scholar 

  16. Jaros, M., Phys. Status Sol. 36, 181 (1969); J. Phys. C 4, 1162 (1971).

    Article  ADS  Google Scholar 

  17. Appel, J., Phys. Rev. 133, A280 (1964).

    Article  ADS  Google Scholar 

  18. Glodeanu, A., Rev. Roum. Phys. 14, 139 (1969).

    Google Scholar 

  19. Pantelides, S. T., Proc. 12th Intern. Conf. Phys. Semic., Stuttgart 1974, p. 396; Pilkuhn, M. H. (ed.) Teubner, Stuttgart.

    Google Scholar 

  20. Narita, K., and Shimizu, T., J. Phys. Soc. Japan 16, 2568 (1961).

    ADS  Google Scholar 

  21. Baldereschi, A., Phys. Rev. B 1, 4673 (1970).

    Article  ADS  Google Scholar 

  22. Ning, T. H. and Sah, C. T., Phys. Rev. B 4, 3468 (1971); ibid, Phys. Rev. B4, p. 3482

    Article  ADS  Google Scholar 

  23. Pantelides, S. T., PhD Thesis, Univ. of Illinois, Urbana (1973).

    Google Scholar 

  24. Pantelides, S. T., and Sah, C. T., Solid State Commun. 11, 1714 (1972); Phys. Rev. B10, 621 (1974); ibid, Phys. Rev. B10, 621 (1974), p. 638.

    Article  Google Scholar 

  25. Pantelides, S. T., Solid State Commun. 14, 1255 (1974).

    Article  ADS  Google Scholar 

  26. Pantelides, S. T., Solid State Commun. 15, 217 (1975).

    Article  ADS  Google Scholar 

  27. Schechter, D., J. Phys. Chem. Solids 23, 237 (1962).

    Article  ADS  Google Scholar 

  28. Suzuki, K., Okazaki, M., and Hasegawa, H., J. Phys. Soc. Japan 19, 930 (1964).

    Article  ADS  Google Scholar 

  29. Mendelson, K. S., and Schultz, D. R., Phys. Stat. Sol. 31, 59 (1969).

    Article  ADS  Google Scholar 

  30. Lipari, N. O., and Baldereschi, A., Phys. Rev. Lett. 25, 1660 (1970); Phys. Rev. B9, 1525 (1974) (and to be published).

    Article  ADS  Google Scholar 

  31. Phillips, J. C., Phys. Rev. Lett. 24, 1114 (1970).

    Article  ADS  Google Scholar 

  32. Morgan, T. N., Proc. 10th Intern. Conf. Phys. Semic, Cambridge, Mass. 1970, p. 266, USAEC (1970).

    Google Scholar 

  33. Bassani, F., Iadonisi, G., and Preziosi, B., Phys. Rev. 186, 735 (1969); Altarelli, M., and Iadonisi, G., Nuovo Cim. 5B, 21 (1971); also Ref. [1]; these authors also examine the coupling between absolute and subsidiary minima in the case of donors.

    Article  ADS  Google Scholar 

  34. Twose, W. D., Appendix in H. Fritzsche, Phys. Rev. 125, 1560 (1962).

    Google Scholar 

  35. Baldereschi, A., Ref. [19], Proc. 12th Intern. Conf. Phys. Semic., Stuttgart 1974, p. 345.

    Google Scholar 

  36. Ho, L. T., and Ramdas, A. K., Phys. Rev. B 5, 462 (1972).

    Article  ADS  Google Scholar 

  37. Krag, W. E., Kleiner, W. H., Zeiger, H. J., and Fischler S., J. Phys. Soc. Japan Suppl. 21, 230 (1966); Kleiner, W. H., and Krag, W. E., Phys. Rev. Lett. 25, 1490 (1970).

    Google Scholar 

  38. Faulkner, R. A., Phys. Rev. 184, 713 (1969).

    Article  ADS  Google Scholar 

  39. Abarenkov, I. V., and Heine, V., Phil. Mag. 12, 829 (1965); Animalu, A. O. E., and Heine, V., Phil. Mag. 12, 1249 (1965).

    Article  Google Scholar 

  40. Austin, B. J., Heine, V., and Sham, L., J. Phys. Rev. 127, 276 (1962).

    Article  MATH  ADS  Google Scholar 

  41. Jaros, M. and Ross, S. F., J. Phys. C: Solid St. Phys. 5, 1753 (1973); ibid Jaros, M., and Ross, S. F., J. Phys. C: Solid St. Phys. 6, 3451 (1973).; Ref [19], p. 401.

    Article  ADS  Google Scholar 

  42. See Pantelides, S. T., J. Phys. C. Solid St. Phys., to be published, for the consequences of this.

    Google Scholar 

  43. Pantelides, S. T., and Harrison, W. A., Phys. Rev. B 11, 3006 (1975); Pantelides, S. T., Phys. Rev. B, June 15 (1975).

    Article  ADS  Google Scholar 

  44. Cohen, M. L., and Heine, V., Solid State Phys. 24, 38 (1970).

    Google Scholar 

  45. Camphausen, D. L., James, J. M., and Sladek, R. J., Phys. Rev. B 2, 1899 (1970).

    Article  ADS  Google Scholar 

  46. Rosier, L. L., and Sah, C. T., J. Solid State Electronics 14, 41 (1971).

    Article  ADS  Google Scholar 

  47. Herman, F., and Skillman, S., Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs, N.J. (1963).

    Google Scholar 

  48. Herring, C., Phys. Rev. 57, 1169 (1940).

    Article  MATH  ADS  Google Scholar 

  49. See e.g. Morita, A., and Nara, H., J. Phys. Soc. Japan Suppl. 21, 234 (1966); Nara, H., and Morita, A., J. Phys. Soc. Japan 23, 831 (1967); these authors attempt to do just that but their formalism suffers from a serious difficulty. See, for example, Eqs. (4a) and (4b) of the latter paper; they differ in a term which is said to be responsible for the calculated “inverted” structure of Si:LiI. The extra term is, however, rigorously zero because of the orthogonality of conduction-band Bloch functions to the core functions of the perfect crystal. See also a discussion in Refs. [23] and [24].

    Google Scholar 

  50. A formalism meant to accomplish this was first given by Hermanson, J., and Phillips, J. C., Phys. Rev. 150, 652 (1966); that formalism contains internal inconsistencies which result in an impurity pseudopotential which is not the difference between the pseudopotentials of the impurity and host ions. See references [23, 24] Pantelides, S. T., PhD Thesis, Univ. of Illinois, Urbana (1973). Pantelides, S. T., and Sah, C. T., Solid State Commun. 11, 1714 (1972); Phys. Rev. B10, 621 (1974); ibid, Phys. Rev. p. 638. and Pantelides, S. T., Phys. Rev. B. (to be published).

    Google Scholar 

  51. Fischler, S., quoted by Newberger, M., and Wells, S. J. (EPIC—Hughes Aircraft Co., Culver City, Calif., 1969).

    Google Scholar 

  52. Ivey, J. L., and Mieher, R. L., Phys. Rev. B 11, 822 (1975); ibid, Phys. Rev. B p. 849.

    Article  ADS  Google Scholar 

  53. Appaillai, M., and Heine, V., T. R. No. 5, Solid State Theory Group, Cavendish Laboratory, Cambridge (1972).

    Google Scholar 

  54. Pantelides, S. T., Bull. Am. Phys. Soc. 19, 298 (1974); and to be poblished.

    Google Scholar 

  55. Onton, A., Fisher, P., and Ramdas, A. K., Phys. Rev. 163, 686 (1967).

    Article  ADS  Google Scholar 

  56. Newberger, M., and Wells, S. J., reference [51] Fischer, S., quoted by Newberger, M., and Wells, S. J. (EPIC—Hughes Aircraft Co., Culver City, Calif., 1969).

    Google Scholar 

  57. Dean, P. J., Faulkner, R. A., Kimura, S., and Ilegems, M., Phys. Rev. B 4 1926 (1971).

    Article  ADS  Google Scholar 

  58. Mehran, F., Morgan, T. N., Title, R. S., and Blum, S. E., Solid St. Commun. 11, 661 (1972).

    Article  ADS  Google Scholar 

  59. Onton, A., Phys. Rev. 186, 786 (1969).

    Article  ADS  Google Scholar 

  60. Dean, P. J., Frosch, C. J., and Henry, C. H., J. Appl. Phys. 39, 5631 (1968).

    Article  ADS  Google Scholar 

  61. See Table 9.2 of Phillips, J. C., “Bonds and Bands in Semiconductors”, Academic, New York (1973).

    Google Scholar 

  62. Harrison, W. A., Phys. Rev. B 10, 767 (1974).

    Article  ADS  Google Scholar 

  63. These systems have a p-like ground state; Morgan, T. N., Phys. Rev. Lett. 21, 819 (1968).

    Article  ADS  Google Scholar 

  64. Walter, J. P., and Cohen, M. L., Phys. Rev. B 5, 3101 (1972).

    Article  ADS  Google Scholar 

  65. Vinsome, R. K. W., and Richardson, D., J. Phys. C. Solid St. Phys. 4, 2650 (1971).

    Article  ADS  Google Scholar 

  66. Phillips, J. C., Phys. Rev. Lett. 22, 285 (1969).

    Article  ADS  Google Scholar 

  67. Baldereschi, A., and Hopfield, J. J., Phys. Rev. Lett. 28, 171 (1972).

    Article  ADS  Google Scholar 

  68. Ross, S. F., and Jaros, M., Solid State Commun. 13, 1751 (1973).

    Article  ADS  Google Scholar 

  69. Pantelides, S. T., Phys. Rev. B, 11, 2391 (1975).

    Article  ADS  Google Scholar 

  70. Altarelli, M., and Dexter, D. L., Phys. Rev. Lett. 29, 1100 (1972).

    Article  ADS  Google Scholar 

  71. Pantelides, S. T., Solid State Commun 16, May 15 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. J. Queisser

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Pantelides, S.T. (1975). Theory of impurity states in semiconductors. In: Queisser, H.J. (eds) Festkörperprobleme 15. Advances in Solid State Physics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107377

Download citation

  • DOI: https://doi.org/10.1007/BFb0107377

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08021-1

  • Online ISBN: 978-3-540-75347-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics