Advertisement

Theory of impurity states in semiconductors

  • Sokrates T. Pantelides
Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 15)

Abstract

We present a comprehensive theory for impurity states in semiconductors. We find that when “true” impurity potentials are employed, the effective-mass theory is valid only for substitutional impurities whose core is isoelectronic to the host-atom core (isocoric impurities) independently of whether the resulting level, is shallow or relatively deep. By formulating the problem in terms of pseudopotential theory we obtain a more general theory which is valid for non-isocoric impurities as well, and in, fact reduces to the “true”-potential formalism in the case of isocoric impurities. We are thus able to directly predict binding energies for a variety of shallow and deep impurities. The theory also supplies new physical understanding of the effectivemass concept and of the mechanisms that determine the binding energies of impurities. Finally, we discuss impurity-like localized states in semiconductors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For a recent review see Bassani, F., Iadonisi, G., and Preziosi, B., Reports on Progr. in Phys. 37, 1099 (1974). Also Ref. [2].CrossRefADSGoogle Scholar
  2. [2]
    Pantelides, S. T., Rev. Mod. Phys., to be published.Google Scholar
  3. [3]
    See e. g. Kukimoto, H., Henry, C. H., and Merritt, F. R., Phys. Rev. B 7, 2486 (1973); Jayson, J. S., Bachrach, R. Z., Dapkus, P. D., and Schumaker, N. E., Phys. Rev. B 6, 2357 (1972).CrossRefADSGoogle Scholar
  4. [4]
    Kohn, W., Solid State Phys. 5, 257 (1957).CrossRefGoogle Scholar
  5. [5]
    Bethe, H. A., “Theory of the Boundary Layer of Crystal Rectifiers” MIT Rad. Lab. Rep. 43-12, Nov. 23, 1942. At. that time donors were referred to as “donators”; see reference [2] for historical review.Google Scholar
  6. [6]
    Aggarwal, R. L., and Ramdas, A. K., Phys. Rev. 140, Al246 (1965).CrossRefADSGoogle Scholar
  7. [7]
    Onton, A., PhD thesis (Purdue University, 1967) (unpublished).Google Scholar
  8. [8]
    Aggarwal, R. L., Fisher, P., Mourzine, V., and Ramdas, A. K., Phys. Rev. 138, A882 (1965).CrossRefADSGoogle Scholar
  9. [9]
    Among others see: Kittel, C., and Mitchell, A. H., Phys. Rev. 96, 1488 (1954); Luttinger, J. M., and Kohn, W., Phys. Rev. 97, 869 (1955).CrossRefADSGoogle Scholar
  10. [10]
    Phillips, J. C., Phys. Rev. B 1, 1540 (1970); ibid, Phys. Rev. B 1, p. 1545.CrossRefADSGoogle Scholar
  11. [11]
    Reiss, H., J. Chem. Phys. 25, 681 (1956); Kaus, P. E., Phys. Rev. 109, 1944 (1958).CrossRefADSGoogle Scholar
  12. [12]
    Müller, A. M. K., Solid State Commun. 2, 205 (1964); Z. Naturforschg. 20a, 1476 (1965).CrossRefADSGoogle Scholar
  13. [13]
    Breitenecker, M., Sexl, R., and Thirring, W., Z. Physik 182, 123 (1964).zbMATHCrossRefADSGoogle Scholar
  14. [14]
    Weinreich, G., J. Phys. Chem. Solids 9, 216 (1959); Shinohara, S., Nuovo Cim. 22, 18 (1961).CrossRefADSGoogle Scholar
  15. [15]
    Csavinsky, P., J. Phys. Chem. Solids 24, 1003 (1963); J. Phys. Soc. Japan 20, 2027 (1965).CrossRefADSGoogle Scholar
  16. [16]
    Jaros, M., Phys. Status Sol. 36, 181 (1969); J. Phys. C 4, 1162 (1971).CrossRefADSGoogle Scholar
  17. [17]
    Appel, J., Phys. Rev. 133, A280 (1964).CrossRefADSGoogle Scholar
  18. [18]
    Glodeanu, A., Rev. Roum. Phys. 14, 139 (1969).Google Scholar
  19. [19]
    Pantelides, S. T., Proc. 12th Intern. Conf. Phys. Semic., Stuttgart 1974, p. 396; Pilkuhn, M. H. (ed.) Teubner, Stuttgart.Google Scholar
  20. [20]
    Narita, K., and Shimizu, T., J. Phys. Soc. Japan 16, 2568 (1961).ADSGoogle Scholar
  21. [21]
    Baldereschi, A., Phys. Rev. B 1, 4673 (1970).CrossRefADSGoogle Scholar
  22. [22]
    Ning, T. H. and Sah, C. T., Phys. Rev. B 4, 3468 (1971); ibid, Phys. Rev. B4, p. 3482CrossRefADSGoogle Scholar
  23. [23]
    Pantelides, S. T., PhD Thesis, Univ. of Illinois, Urbana (1973).Google Scholar
  24. [24]
    Pantelides, S. T., and Sah, C. T., Solid State Commun. 11, 1714 (1972); Phys. Rev. B10, 621 (1974); ibid, Phys. Rev. B10, 621 (1974), p. 638.CrossRefGoogle Scholar
  25. [25]
    Pantelides, S. T., Solid State Commun. 14, 1255 (1974).CrossRefADSGoogle Scholar
  26. [26]
    Pantelides, S. T., Solid State Commun. 15, 217 (1975).CrossRefADSGoogle Scholar
  27. [27]
    Schechter, D., J. Phys. Chem. Solids 23, 237 (1962).CrossRefADSGoogle Scholar
  28. [28]
    Suzuki, K., Okazaki, M., and Hasegawa, H., J. Phys. Soc. Japan 19, 930 (1964).ADSCrossRefGoogle Scholar
  29. [29]
    Mendelson, K. S., and Schultz, D. R., Phys. Stat. Sol. 31, 59 (1969).CrossRefADSGoogle Scholar
  30. [30]
    Lipari, N. O., and Baldereschi, A., Phys. Rev. Lett. 25, 1660 (1970); Phys. Rev. B9, 1525 (1974) (and to be published).CrossRefADSGoogle Scholar
  31. [31]
    Phillips, J. C., Phys. Rev. Lett. 24, 1114 (1970).CrossRefADSGoogle Scholar
  32. [32]
    Morgan, T. N., Proc. 10th Intern. Conf. Phys. Semic, Cambridge, Mass. 1970, p. 266, USAEC (1970).Google Scholar
  33. [33]
    Bassani, F., Iadonisi, G., and Preziosi, B., Phys. Rev. 186, 735 (1969); Altarelli, M., and Iadonisi, G., Nuovo Cim. 5B, 21 (1971); also Ref. [1]; these authors also examine the coupling between absolute and subsidiary minima in the case of donors.CrossRefADSGoogle Scholar
  34. [34]
    Twose, W. D., Appendix in H. Fritzsche, Phys. Rev. 125, 1560 (1962).Google Scholar
  35. [35]
    Baldereschi, A., Ref. [19], Proc. 12th Intern. Conf. Phys. Semic., Stuttgart 1974, p. 345.Google Scholar
  36. [36]
    Ho, L. T., and Ramdas, A. K., Phys. Rev. B 5, 462 (1972).CrossRefADSGoogle Scholar
  37. [37]
    Krag, W. E., Kleiner, W. H., Zeiger, H. J., and Fischler S., J. Phys. Soc. Japan Suppl. 21, 230 (1966); Kleiner, W. H., and Krag, W. E., Phys. Rev. Lett. 25, 1490 (1970).Google Scholar
  38. [38]
    Faulkner, R. A., Phys. Rev. 184, 713 (1969).CrossRefADSGoogle Scholar
  39. [39]
    Abarenkov, I. V., and Heine, V., Phil. Mag. 12, 829 (1965); Animalu, A. O. E., and Heine, V., Phil. Mag. 12, 1249 (1965).CrossRefGoogle Scholar
  40. [40]
    Austin, B. J., Heine, V., and Sham, L., J. Phys. Rev. 127, 276 (1962).zbMATHCrossRefADSGoogle Scholar
  41. [41]
    Jaros, M. and Ross, S. F., J. Phys. C: Solid St. Phys. 5, 1753 (1973); ibid Jaros, M., and Ross, S. F., J. Phys. C: Solid St. Phys. 6, 3451 (1973).; Ref [19], p. 401.CrossRefADSGoogle Scholar
  42. [42]
    See Pantelides, S. T., J. Phys. C. Solid St. Phys., to be published, for the consequences of this.Google Scholar
  43. [43]
    Pantelides, S. T., and Harrison, W. A., Phys. Rev. B 11, 3006 (1975); Pantelides, S. T., Phys. Rev. B, June 15 (1975).CrossRefADSGoogle Scholar
  44. [44]
    Cohen, M. L., and Heine, V., Solid State Phys. 24, 38 (1970).Google Scholar
  45. [45]
    Camphausen, D. L., James, J. M., and Sladek, R. J., Phys. Rev. B 2, 1899 (1970).CrossRefADSGoogle Scholar
  46. [46]
    Rosier, L. L., and Sah, C. T., J. Solid State Electronics 14, 41 (1971).CrossRefADSGoogle Scholar
  47. [47]
    Herman, F., and Skillman, S., Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs, N.J. (1963).Google Scholar
  48. [48]
    Herring, C., Phys. Rev. 57, 1169 (1940).zbMATHCrossRefADSGoogle Scholar
  49. [49]
    See e.g. Morita, A., and Nara, H., J. Phys. Soc. Japan Suppl. 21, 234 (1966); Nara, H., and Morita, A., J. Phys. Soc. Japan 23, 831 (1967); these authors attempt to do just that but their formalism suffers from a serious difficulty. See, for example, Eqs. (4a) and (4b) of the latter paper; they differ in a term which is said to be responsible for the calculated “inverted” structure of Si:LiI. The extra term is, however, rigorously zero because of the orthogonality of conduction-band Bloch functions to the core functions of the perfect crystal. See also a discussion in Refs. [23] and [24].Google Scholar
  50. [50]
    A formalism meant to accomplish this was first given by Hermanson, J., and Phillips, J. C., Phys. Rev. 150, 652 (1966); that formalism contains internal inconsistencies which result in an impurity pseudopotential which is not the difference between the pseudopotentials of the impurity and host ions. See references [23, 24] Pantelides, S. T., PhD Thesis, Univ. of Illinois, Urbana (1973). Pantelides, S. T., and Sah, C. T., Solid State Commun. 11, 1714 (1972); Phys. Rev. B10, 621 (1974); ibid, Phys. Rev. p. 638. and Pantelides, S. T., Phys. Rev. B. (to be published).Google Scholar
  51. [51]
    Fischler, S., quoted by Newberger, M., and Wells, S. J. (EPIC—Hughes Aircraft Co., Culver City, Calif., 1969).Google Scholar
  52. [52]
    Ivey, J. L., and Mieher, R. L., Phys. Rev. B 11, 822 (1975); ibid, Phys. Rev. B p. 849.CrossRefADSGoogle Scholar
  53. [53]
    Appaillai, M., and Heine, V., T. R. No. 5, Solid State Theory Group, Cavendish Laboratory, Cambridge (1972).Google Scholar
  54. [54]
    Pantelides, S. T., Bull. Am. Phys. Soc. 19, 298 (1974); and to be poblished.Google Scholar
  55. [55]
    Onton, A., Fisher, P., and Ramdas, A. K., Phys. Rev. 163, 686 (1967).CrossRefADSGoogle Scholar
  56. [56]
    Newberger, M., and Wells, S. J., reference [51] Fischer, S., quoted by Newberger, M., and Wells, S. J. (EPIC—Hughes Aircraft Co., Culver City, Calif., 1969).Google Scholar
  57. [57]
    Dean, P. J., Faulkner, R. A., Kimura, S., and Ilegems, M., Phys. Rev. B 4 1926 (1971).CrossRefADSGoogle Scholar
  58. [58]
    Mehran, F., Morgan, T. N., Title, R. S., and Blum, S. E., Solid St. Commun. 11, 661 (1972).CrossRefADSGoogle Scholar
  59. [59]
    Onton, A., Phys. Rev. 186, 786 (1969).CrossRefADSGoogle Scholar
  60. [60]
    Dean, P. J., Frosch, C. J., and Henry, C. H., J. Appl. Phys. 39, 5631 (1968).CrossRefADSGoogle Scholar
  61. [61]
    See Table 9.2 of Phillips, J. C., “Bonds and Bands in Semiconductors”, Academic, New York (1973).Google Scholar
  62. [62]
    Harrison, W. A., Phys. Rev. B 10, 767 (1974).CrossRefADSGoogle Scholar
  63. [63]
    These systems have a p-like ground state; Morgan, T. N., Phys. Rev. Lett. 21, 819 (1968).CrossRefADSGoogle Scholar
  64. [64]
    Walter, J. P., and Cohen, M. L., Phys. Rev. B 5, 3101 (1972).CrossRefADSGoogle Scholar
  65. [65]
    Vinsome, R. K. W., and Richardson, D., J. Phys. C. Solid St. Phys. 4, 2650 (1971).CrossRefADSGoogle Scholar
  66. [66]
    Phillips, J. C., Phys. Rev. Lett. 22, 285 (1969).CrossRefADSGoogle Scholar
  67. [67]
    Baldereschi, A., and Hopfield, J. J., Phys. Rev. Lett. 28, 171 (1972).CrossRefADSGoogle Scholar
  68. [68]
    Ross, S. F., and Jaros, M., Solid State Commun. 13, 1751 (1973).CrossRefADSGoogle Scholar
  69. [69]
    Pantelides, S. T., Phys. Rev. B, 11, 2391 (1975).CrossRefADSGoogle Scholar
  70. [70]
    Altarelli, M., and Dexter, D. L., Phys. Rev. Lett. 29, 1100 (1972).CrossRefADSGoogle Scholar
  71. [71]
    Pantelides, S. T., Solid State Commun 16, May 15 (1975).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1975

Authors and Affiliations

  • Sokrates T. Pantelides
    • 1
  1. 1.Department of Applied PhysicsStanford UniversityStanfordUSA

Personalised recommendations