Skip to main content

Confined carrier quantum states in ultrathin semiconductor heterostructures

  • Chapter
  • First Online:

Part of the book series: Advances in Solid State Physics ((ASSP,volume 15))

Abstract

New effects associated with the quantization of confined carrier motion in ultrathin semiconductor heterostructures have recently been observed. Optical and electrical studies of molecular-beam grown AlxGa1−xAs-GaAs structures consisting of to 100 layers with layers as thin as 10 Å have revealed discrete structures which are difficelt to analyze with usual bulk crystal methods. A complete understanding can be achieved with simple one-dimensional quantum mechanical models. In particular, the analysis of the optical data gives detailed quantitative information about confined electrons, light and heavy holes, and excitons in the GaAs layers. The relevance of these results from band structure analysis to device technology will be considered.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dorda, G., “Surface Quantization in Semiconductors” in: Festkörper-Probleme XIII (Advances in Solid State Physics), p. 215, Pergamon-Vieweg (1973).

    Google Scholar 

  2. Grimes, C. C. and Brown, T. R. Phys. Rev. Lett. 32, 280 (1974), Phys. Rev. Lett. 29, 1233 (1972).

    Article  ADS  Google Scholar 

  3. Cole, M. W., Rev. Mod. Phys. 46, 451 (1974).

    Article  ADS  Google Scholar 

  4. Jaklevic, R. C., Lambe, J., Mikkar, M., and Vassell, W. C., Phys. Rev. Lett. 26, 88 (1971).

    Article  ADS  Google Scholar 

  5. Jaklevic, R. C., Lambe, J., Mikkar, M., and Vassell, W. C., Solid State Commun. 10, 199 (1972).

    Article  ADS  Google Scholar 

  6. Jaklevic, R. C. and Lambe, J. Surface Sci. 37, 922 (1973).

    Article  ADS  Google Scholar 

  7. Rowell, J. M., Phys. Rev. Lett. 30, 167 (1973).

    Article  ADS  Google Scholar 

  8. Rowell, J. M., J. Vac. Sci. Technol. 10, p702 (1973).

    Article  ADS  Google Scholar 

  9. Reviewed by Dorda, [Ref. 1] 'surface Quantization in Semiconductors” in: Festkörper-Probleme XIII (Advances in Solid State Physics), p. 215, Pergamon-Vieweg (1973).

    Google Scholar 

  10. Chang, L. L., Esaki, L., and Tsu, R., Appl. Phys. Lett. 24, 593 (1974).

    Article  ADS  Google Scholar 

  11. Dingle, R., Wiegmann, R., and Henry, C. H., Phys. Rev. Lett. 33, 827 (1974).

    Article  ADS  Google Scholar 

  12. Filatov, O. N. and Karpovitch, I. A., Fiz. Tverd. Tela. 10, 2886 (1968).

    Google Scholar 

  13. Reviewed by Elinson, M. I., Volkov, V. A., Lutskij, V. N., and Pinsker, T. N., Thin Solid Films 12, 383 (1972).

    Article  ADS  Google Scholar 

  14. Ageev, L. A., Miloslavskii, V. K., and Shklyarevskii, I. N. Fiz. Tverd. Tela. 15, 2794 (1973), Sov. Phys. Solid State 15, 1861 (1974).

    Google Scholar 

  15. Consadori, F. and Frindt, R. F., Phys. Rev. B 2, 4893 (1970).

    Article  ADS  Google Scholar 

  16. Heidrich, K., Staude, W., and Treusch, J., Phys. Rev. Lett. 33, 1220 (1974).

    Article  ADS  Google Scholar 

  17. Yoffe, A. D., Festkörper-Probleme XIII (Advances in Solid State Physics), p. 1, Pergamon-Vieweg (1973) has reviewed much of the data on layered compounds.

    Google Scholar 

  18. Arthur, J. R., J. Appl. Phys. 39, 4032 (1968).

    Article  ADS  Google Scholar 

  19. Cho, A. Y., J. Vac. Sci. Technol. 8, S31 (1971).

    Article  ADS  Google Scholar 

  20. Cho, A. Y., Appl. Phys. Lett. 19, 467 (1971).

    Article  ADS  Google Scholar 

  21. Kauzmann, W., Quantum Chemistry Chapter 6, Academic, New York (1957).

    Google Scholar 

  22. Tsui, D. C., Phys. Rev. B 4, 4438 (1971).

    Article  ADS  Google Scholar 

  23. Duke, C. B., Tunneling in Solids, Academic, New York (1969).

    Google Scholar 

  24. Tunneling Phenomena in Solids, E. Burstein and S. Lundquist (eds.), Plenum Press, New York (1969).

    Google Scholar 

  25. Tsu, R., and Esaki, L., Appl. Phys. Lett. 22, 562 (1973).

    Article  ADS  Google Scholar 

  26. Esaki, L. and Chang, L. L., Phys. Rev. Lett. 33, 495 (1974).

    Article  ADS  Google Scholar 

  27. Eski, L. and Tsu, R., IBM Journal of Res. 14, 61 (1970).

    Article  Google Scholar 

  28. Sze, S. M., Physics of Semiconductor Devices. Chapter 14, p. 731. J. Wiley, New York (1969).

    Google Scholar 

  29. Suris, R. A., Fiz. Tekh. Poluprov. 7, 1540 (1973); Sov. Phys. Semicond. 7, 1030 (1974).

    Google Scholar 

  30. Suris, R. A., Fiz. Tekh. Poluprov. 7, 1549 (1973); Sov. Phys. Semicond. 7, 1035 (1974).

    Google Scholar 

  31. Godwin, V. E., and Tefft, W. E. Surf. Sci. 34, 108 (1973), consider the binding of shallow donor impurities near Si and Ge surfaces. The results are qualitatively similar to what might be expected in a very thin film.

    Article  ADS  Google Scholar 

  32. Sell, D. D., Phys. Rev. B 6, 3750 (1972).

    Article  ADS  Google Scholar 

  33. Baldereschi, A. and Lipari, N. O., Phys. Rev. B 3, 439 (1971).

    Article  ADS  Google Scholar 

  34. Elliott, R. J., Polarons and Excitons, p. 269, Oliver and Boyd, London (1963).

    Google Scholar 

  35. Ralph, H. I., Solid State Commun. 3, 303 (1965).

    Article  ADS  Google Scholar 

  36. Esaki, L., Chang, L. L., Howard, W. E., and Rideout, V. L., in “Proc. 11th International Conference on the Physics of Semiconductors”, p. 431, PWN-Polish Scientific publishers, Warsaw (1972).

    Google Scholar 

  37. Ilegems, M. and Dingle, R., “Proc. 5th Int. Symp. on GaAs”, Inst. Phys. Conf. Ser. (to be published).

    Google Scholar 

  38. Evans, B. L. and Young, P. A., Proc. Roy. Soc. 284, 402 (1965). See [Ref. 17] and references therein for a more recent view of these spectra.

    Article  ADS  Google Scholar 

  39. Nikitine, S., Mme. Schmitt-Burckel, Biellmann, J., and Ringeissen, J., J. Phys. Chem. Solids 25, 951 (1964).

    Article  ADS  Google Scholar 

  40. Brebner, J. L., J. Phys. Chem. Solids 25, 1427 (1964).

    Article  ADS  Google Scholar 

  41. It has been shown that interfacial stress has an almost negligible effect on these absorption spectra, R. Dingle and W. Wiegmann (to be published).

    Google Scholar 

  42. Onton, A., “Compound Semiconductor Alloys” in: Festkörper-Probleme XIII (Advances in Solid State Physics) p. 59. Pergamon-Vieweg (1973).

    Google Scholar 

  43. Van Vechten, J. H., Phys. Rev. 187, 1007 (1969).

    Article  ADS  Google Scholar 

  44. Alferov, Zh. I., Andreev, V. M., Koral'kov, V. I., Portnoi, E. L., and Tret'yakov, D. N., Sov. Phys. Semicond. 2, 843 (1969).

    Google Scholar 

  45. Logan, R. A. and Reinhart, F. K., J. Appl. Phys. 44, 4172 (1973).

    Article  ADS  Google Scholar 

  46. Hensel, J. C. and Feher, G., Phys. Rev. 129, 1041 (1963).

    Article  MATH  ADS  Google Scholar 

  47. Poschl, G. and Teller, E., Z. Physik 83, 143 (1933).

    Article  ADS  Google Scholar 

  48. Similar effects have been seen in interband magneto-optical transitions. See for instance, R. L. Aggarwal, in: Semiconductors and Semimetals, Vol. 9, Ch. 2, Academic, New York (1972).

    Google Scholar 

  49. Ludeke, R., Esaki, L., and Chang, L. L., Appl. Phys. Lett. 24, 417 (1974).

    Article  ADS  Google Scholar 

  50. Dingle, R., Gossard, A. C., and Wiegmann, W., Bull. Amer. Phys. Soc., paper AF-10, March 1975 (to be published).

    Google Scholar 

  51. Tsu, R., Koma, A., and Esaki, L., J. Appl. Phys. 46, 842 (1975), have published reflectivity data taken from superlattices structures. The results are not of sufficient precision to be of interest here.

    Article  ADS  Google Scholar 

  52. Van der Ziel, J. P., Dingle, R., Miller, R. C., Wiegmann, W., and Nordland, W. A., Appl. Phys. Lett. 26, 463 (1975).

    Article  ADS  Google Scholar 

  53. Cho, A. Y. and Casey, H. C., Jr., Appl. Phys. Lett. 25, 288 (1974).

    Article  ADS  Google Scholar 

  54. Esaki, L., Science 183, 1149 (1974). *** DIRECT SUPPORT *** A00AX015 00003

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. J. Queisser

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Dingle, R. (1975). Confined carrier quantum states in ultrathin semiconductor heterostructures. In: Queisser, H.J. (eds) Festkörperprobleme 15. Advances in Solid State Physics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107373

Download citation

  • DOI: https://doi.org/10.1007/BFb0107373

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08021-1

  • Online ISBN: 978-3-540-75347-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics