Confined carrier quantum states in ultrathin semiconductor heterostructures

  • Raymond Dingle
Part of the Advances in Solid State Physics book series (ASSP, volume 15)


New effects associated with the quantization of confined carrier motion in ultrathin semiconductor heterostructures have recently been observed. Optical and electrical studies of molecular-beam grown AlxGa1−xAs-GaAs structures consisting of to 100 layers with layers as thin as 10 Å have revealed discrete structures which are difficelt to analyze with usual bulk crystal methods. A complete understanding can be achieved with simple one-dimensional quantum mechanical models. In particular, the analysis of the optical data gives detailed quantitative information about confined electrons, light and heavy holes, and excitons in the GaAs layers. The relevance of these results from band structure analysis to device technology will be considered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dorda, G., “Surface Quantization in Semiconductors” in: Festkörper-Probleme XIII (Advances in Solid State Physics), p. 215, Pergamon-Vieweg (1973).Google Scholar
  2. [2]
    Grimes, C. C. and Brown, T. R. Phys. Rev. Lett. 32, 280 (1974), Phys. Rev. Lett. 29, 1233 (1972).CrossRefADSGoogle Scholar
  3. [3]
    Cole, M. W., Rev. Mod. Phys. 46, 451 (1974).CrossRefADSGoogle Scholar
  4. [4]
    Jaklevic, R. C., Lambe, J., Mikkar, M., and Vassell, W. C., Phys. Rev. Lett. 26, 88 (1971).CrossRefADSGoogle Scholar
  5. [5]
    Jaklevic, R. C., Lambe, J., Mikkar, M., and Vassell, W. C., Solid State Commun. 10, 199 (1972).CrossRefADSGoogle Scholar
  6. [6]
    Jaklevic, R. C. and Lambe, J. Surface Sci. 37, 922 (1973).CrossRefADSGoogle Scholar
  7. [7]
    Rowell, J. M., Phys. Rev. Lett. 30, 167 (1973).CrossRefADSGoogle Scholar
  8. [8]
    Rowell, J. M., J. Vac. Sci. Technol. 10, p702 (1973).CrossRefADSGoogle Scholar
  9. [9]
    Reviewed by Dorda, [Ref. 1] 'surface Quantization in Semiconductors” in: Festkörper-Probleme XIII (Advances in Solid State Physics), p. 215, Pergamon-Vieweg (1973).Google Scholar
  10. [10]
    Chang, L. L., Esaki, L., and Tsu, R., Appl. Phys. Lett. 24, 593 (1974).CrossRefADSGoogle Scholar
  11. [11]
    Dingle, R., Wiegmann, R., and Henry, C. H., Phys. Rev. Lett. 33, 827 (1974).CrossRefADSGoogle Scholar
  12. [12]
    Filatov, O. N. and Karpovitch, I. A., Fiz. Tverd. Tela. 10, 2886 (1968).Google Scholar
  13. [13]
    Reviewed by Elinson, M. I., Volkov, V. A., Lutskij, V. N., and Pinsker, T. N., Thin Solid Films 12, 383 (1972).CrossRefADSGoogle Scholar
  14. [14]
    Ageev, L. A., Miloslavskii, V. K., and Shklyarevskii, I. N. Fiz. Tverd. Tela. 15, 2794 (1973), Sov. Phys. Solid State 15, 1861 (1974).Google Scholar
  15. [15]
    Consadori, F. and Frindt, R. F., Phys. Rev. B 2, 4893 (1970).CrossRefADSGoogle Scholar
  16. [16]
    Heidrich, K., Staude, W., and Treusch, J., Phys. Rev. Lett. 33, 1220 (1974).CrossRefADSGoogle Scholar
  17. [17]
    Yoffe, A. D., Festkörper-Probleme XIII (Advances in Solid State Physics), p. 1, Pergamon-Vieweg (1973) has reviewed much of the data on layered compounds.Google Scholar
  18. [18]
    Arthur, J. R., J. Appl. Phys. 39, 4032 (1968).CrossRefADSGoogle Scholar
  19. [19]
    Cho, A. Y., J. Vac. Sci. Technol. 8, S31 (1971).CrossRefADSGoogle Scholar
  20. [20]
    Cho, A. Y., Appl. Phys. Lett. 19, 467 (1971).CrossRefADSGoogle Scholar
  21. [21]
    Kauzmann, W., Quantum Chemistry Chapter 6, Academic, New York (1957).Google Scholar
  22. [22]
    Tsui, D. C., Phys. Rev. B 4, 4438 (1971).CrossRefADSGoogle Scholar
  23. [23]
    Duke, C. B., Tunneling in Solids, Academic, New York (1969).Google Scholar
  24. [24]
    Tunneling Phenomena in Solids, E. Burstein and S. Lundquist (eds.), Plenum Press, New York (1969).Google Scholar
  25. [25]
    Tsu, R., and Esaki, L., Appl. Phys. Lett. 22, 562 (1973).CrossRefADSGoogle Scholar
  26. [26]
    Esaki, L. and Chang, L. L., Phys. Rev. Lett. 33, 495 (1974).CrossRefADSGoogle Scholar
  27. [27]
    Eski, L. and Tsu, R., IBM Journal of Res. 14, 61 (1970).CrossRefGoogle Scholar
  28. [28]
    Sze, S. M., Physics of Semiconductor Devices. Chapter 14, p. 731. J. Wiley, New York (1969).Google Scholar
  29. [29]
    Suris, R. A., Fiz. Tekh. Poluprov. 7, 1540 (1973); Sov. Phys. Semicond. 7, 1030 (1974).Google Scholar
  30. [30]
    Suris, R. A., Fiz. Tekh. Poluprov. 7, 1549 (1973); Sov. Phys. Semicond. 7, 1035 (1974).Google Scholar
  31. [31]
    Godwin, V. E., and Tefft, W. E. Surf. Sci. 34, 108 (1973), consider the binding of shallow donor impurities near Si and Ge surfaces. The results are qualitatively similar to what might be expected in a very thin film.CrossRefADSGoogle Scholar
  32. [32]
    Sell, D. D., Phys. Rev. B 6, 3750 (1972).CrossRefADSGoogle Scholar
  33. [33]
    Baldereschi, A. and Lipari, N. O., Phys. Rev. B 3, 439 (1971).CrossRefADSGoogle Scholar
  34. [34]
    Elliott, R. J., Polarons and Excitons, p. 269, Oliver and Boyd, London (1963).Google Scholar
  35. [35]
    Ralph, H. I., Solid State Commun. 3, 303 (1965).CrossRefADSGoogle Scholar
  36. [36]
    Esaki, L., Chang, L. L., Howard, W. E., and Rideout, V. L., in “Proc. 11th International Conference on the Physics of Semiconductors”, p. 431, PWN-Polish Scientific publishers, Warsaw (1972).Google Scholar
  37. [37]
    Ilegems, M. and Dingle, R., “Proc. 5th Int. Symp. on GaAs”, Inst. Phys. Conf. Ser. (to be published).Google Scholar
  38. [38]
    Evans, B. L. and Young, P. A., Proc. Roy. Soc. 284, 402 (1965). See [Ref. 17] and references therein for a more recent view of these spectra.CrossRefADSGoogle Scholar
  39. [39]
    Nikitine, S., Mme. Schmitt-Burckel, Biellmann, J., and Ringeissen, J., J. Phys. Chem. Solids 25, 951 (1964).CrossRefADSGoogle Scholar
  40. [40]
    Brebner, J. L., J. Phys. Chem. Solids 25, 1427 (1964).CrossRefADSGoogle Scholar
  41. [41]
    It has been shown that interfacial stress has an almost negligible effect on these absorption spectra, R. Dingle and W. Wiegmann (to be published).Google Scholar
  42. [42]
    Onton, A., “Compound Semiconductor Alloys” in: Festkörper-Probleme XIII (Advances in Solid State Physics) p. 59. Pergamon-Vieweg (1973).Google Scholar
  43. [43]
    Van Vechten, J. H., Phys. Rev. 187, 1007 (1969).CrossRefADSGoogle Scholar
  44. [44]
    Alferov, Zh. I., Andreev, V. M., Koral'kov, V. I., Portnoi, E. L., and Tret'yakov, D. N., Sov. Phys. Semicond. 2, 843 (1969).Google Scholar
  45. [45]
    Logan, R. A. and Reinhart, F. K., J. Appl. Phys. 44, 4172 (1973).CrossRefADSGoogle Scholar
  46. [46]
    Hensel, J. C. and Feher, G., Phys. Rev. 129, 1041 (1963).zbMATHCrossRefADSGoogle Scholar
  47. [47]
    Poschl, G. and Teller, E., Z. Physik 83, 143 (1933).CrossRefADSGoogle Scholar
  48. [48]
    Similar effects have been seen in interband magneto-optical transitions. See for instance, R. L. Aggarwal, in: Semiconductors and Semimetals, Vol. 9, Ch. 2, Academic, New York (1972).Google Scholar
  49. [49]
    Ludeke, R., Esaki, L., and Chang, L. L., Appl. Phys. Lett. 24, 417 (1974).CrossRefADSGoogle Scholar
  50. [50]
    Dingle, R., Gossard, A. C., and Wiegmann, W., Bull. Amer. Phys. Soc., paper AF-10, March 1975 (to be published).Google Scholar
  51. [51]
    Tsu, R., Koma, A., and Esaki, L., J. Appl. Phys. 46, 842 (1975), have published reflectivity data taken from superlattices structures. The results are not of sufficient precision to be of interest here.CrossRefADSGoogle Scholar
  52. [52]
    Van der Ziel, J. P., Dingle, R., Miller, R. C., Wiegmann, W., and Nordland, W. A., Appl. Phys. Lett. 26, 463 (1975).CrossRefADSGoogle Scholar
  53. [53]
    Cho, A. Y. and Casey, H. C., Jr., Appl. Phys. Lett. 25, 288 (1974).CrossRefADSGoogle Scholar
  54. [54]
    Esaki, L., Science 183, 1149 (1974). *** DIRECT SUPPORT *** A00AX015 00003CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1975

Authors and Affiliations

  • Raymond Dingle
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations