Skip to main content

Out of equilibrium thermal field theories — Elimination of pinching singularities

  • Conference paper
  • First Online:
Hadrons in Dense Matter and Hadrosynthesis

Part of the book series: Lecture Notes in Physics ((LNP,volume 516))

  • 141 Accesses

Abstract

We analyze ill-defined pinch singularities characteristic of out of equilibrium thermal field theories. We identify two mechanisms that eliminate pinching even at the single self-energy insertion approximation to the propagator: the first is based on the vanishing of phase space at the singular point (threshold effect). It is effective in QED with a massive electron and a massless photon. In massless QCD, this mechanism fails, but the pinches cancel owing to the second mechanism, i.e., owing to the spinor/tensor structure of the single self-energy insertion contribution to the propagator. The constraints imposed on distribution functions are very reasonable. The same mechanism eliminates pinching from the resummed Schwinger-Dyson series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. P. Landsman and Ch. G. van Weert, Phys. Rep. 145, 141 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Le Bellac, “Thermal Field Theory”, (Cambridge University Press, Cambridge, 1996).

    Book  Google Scholar 

  3. R. Baier, B. Pire, and D. Schiff, Phys. Rep. D38, 2814 (1988).

    ADS  Google Scholar 

  4. J. Cleymans and I. Dadić, Z. Phys. C42, 133 (1989).

    Google Scholar 

  5. T. Altherr, P. Aurenche, and T. Becherrawy, Nucl. Phys. B315, 436 (1989).

    Article  ADS  Google Scholar 

  6. T. Grandou, M. Le Bellac, and J.-L. Meunier, Z. Phys. C43, 575 (1989).

    ADS  Google Scholar 

  7. J. Schwinger, J. Math. Phys. 2, 407 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. L. V. Keldysh, ZH. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys.-JETP 20, 1018 (1965)].

    Google Scholar 

  9. J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

    Article  ADS  Google Scholar 

  10. H. A. Weldon, Phys. Rep. D45, 352 (1992).

    ADS  Google Scholar 

  11. P. F. Bedaque, Phys. Lett. B344, 23 (1995).

    ADS  Google Scholar 

  12. M. Le Bellac and H. Mabilat, Phys. Rep. D55, 3215 (1997).

    ADS  Google Scholar 

  13. A. Niégawa, Preprint HEP-PH/9711477, OCU-PHYS-168, 1997.

    Google Scholar 

  14. T. Altherr and D. Seibert, Phys. Lett. B333, 149 (1994).

    ADS  Google Scholar 

  15. T. Altherr, Phys. Lett. B341, 325 (1995).

    ADS  Google Scholar 

  16. R. Baier, M. Dirks, and K. Redlich, Phys. Rep. D55, 4344 (1997).

    ADS  Google Scholar 

  17. R. Baier, M. Dirks, K. Redlich, and D. Schiff, Preprint HEP-PH/9704262.

    Google Scholar 

  18. R. Baier, M. Dirks, and K. Redlich, Contribution to the XXXLII Cracow School (to appear in Acta. Phys. Pol.), Preprint HEP-PH/9711213.

    Google Scholar 

  19. M. E. Carrington, H. Defu, and M. H. Thoma, Preprint HEP-PH/9708363.

    Google Scholar 

  20. A. Niégawa, Preprint HEP-TH/9709140, OCU-PHYS-166.

    Google Scholar 

  21. R. D. Pisarski, Phys. Rev. Lett 63, 1129 (1989).

    Article  ADS  Google Scholar 

  22. E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569 (1990).

    Article  ADS  Google Scholar 

  23. J. Frenkel and J. C. Taylor, Nucl. Phys. B334, 199 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Kobes, G. Kunstatter, and K. W. Mak, Z. Phys. C45, 129 (1989).

    Google Scholar 

  25. R. Kobes, G. Kunstatter, and A. Rebhan, Phys. Rev. Lett 64, 2992 (1990).

    Article  ADS  Google Scholar 

  26. H. A. Weldon, preprint HEP-PH/9701279.

    Google Scholar 

  27. K.-C. Chou, Z.-B. Su, B.-L. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. J. Niemi, Phys. Lett. B203, 425 (1988).

    ADS  MathSciNet  Google Scholar 

  29. J-P, Blaizot, E. Iancu, and J-Y. Ollitrault, in Quark-Gluon Plasma II, edited by R. Hwa (World Scientific, Singapore, 1995).

    Google Scholar 

  30. E. Calzetta and B. L. Hu, Phys. Rep. D37, 2878 (1988).

    ADS  MathSciNet  Google Scholar 

  31. J. F. Donoghue and B. R. Holstein, Phys. Rep. D28, 340 (1983) and D29, 3004 (1984).

    ADS  Google Scholar 

  32. J. F. Donoghue, B. R. Holstein, and R. W. Robinet, Ann. Phys. 164, 233 (1985).

    Article  ADS  Google Scholar 

  33. W. Keil and R. L. Kobes, Physica A158, 47 (1989).

    ADS  Google Scholar 

  34. M. Le Bellac and D. Poizat, Z. Phys. C47, 125 (1990).

    Google Scholar 

  35. R. L. Kobes and G. W. Semenoff, Nucl. Phys. B260, 714 (1985).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean Cleymans Hendrik B. Geyer Frederik G. Scholtz

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Dadić, I. (1999). Out of equilibrium thermal field theories — Elimination of pinching singularities. In: Cleymans, J., Geyer, H.B., Scholtz, F.G. (eds) Hadrons in Dense Matter and Hadrosynthesis. Lecture Notes in Physics, vol 516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107315

Download citation

  • DOI: https://doi.org/10.1007/BFb0107315

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65209-0

  • Online ISBN: 978-3-540-49483-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics