Out of equilibrium thermal field theories — Elimination of pinching singularities

  • Ivan Dadić
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 516)


We analyze ill-defined pinch singularities characteristic of out of equilibrium thermal field theories. We identify two mechanisms that eliminate pinching even at the single self-energy insertion approximation to the propagator: the first is based on the vanishing of phase space at the singular point (threshold effect). It is effective in QED with a massive electron and a massless photon. In massless QCD, this mechanism fails, but the pinches cancel owing to the second mechanism, i.e., owing to the spinor/tensor structure of the single self-energy insertion contribution to the propagator. The constraints imposed on distribution functions are very reasonable. The same mechanism eliminates pinching from the resummed Schwinger-Dyson series.


Mass Shell Gluon Propagator Massless Quark Collinear Singularity Ghost Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. P. Landsman and Ch. G. van Weert, Phys. Rep. 145, 141 (1987).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    M. Le Bellac, “Thermal Field Theory”, (Cambridge University Press, Cambridge, 1996).CrossRefGoogle Scholar
  3. 3.
    R. Baier, B. Pire, and D. Schiff, Phys. Rep. D38, 2814 (1988).ADSGoogle Scholar
  4. 4.
    J. Cleymans and I. Dadić, Z. Phys. C42, 133 (1989).Google Scholar
  5. 5.
    T. Altherr, P. Aurenche, and T. Becherrawy, Nucl. Phys. B315, 436 (1989).CrossRefADSGoogle Scholar
  6. 6.
    T. Grandou, M. Le Bellac, and J.-L. Meunier, Z. Phys. C43, 575 (1989).ADSGoogle Scholar
  7. 7.
    J. Schwinger, J. Math. Phys. 2, 407 (1961).zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    L. V. Keldysh, ZH. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys.-JETP 20, 1018 (1965)].Google Scholar
  9. 9.
    J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).CrossRefADSGoogle Scholar
  10. 10.
    H. A. Weldon, Phys. Rep. D45, 352 (1992).ADSGoogle Scholar
  11. 11.
    P. F. Bedaque, Phys. Lett. B344, 23 (1995).ADSGoogle Scholar
  12. 12.
    M. Le Bellac and H. Mabilat, Phys. Rep. D55, 3215 (1997).ADSGoogle Scholar
  13. 13.
    A. Niégawa, Preprint HEP-PH/9711477, OCU-PHYS-168, 1997.Google Scholar
  14. 14.
    T. Altherr and D. Seibert, Phys. Lett. B333, 149 (1994).ADSGoogle Scholar
  15. 15.
    T. Altherr, Phys. Lett. B341, 325 (1995).ADSGoogle Scholar
  16. 16.
    R. Baier, M. Dirks, and K. Redlich, Phys. Rep. D55, 4344 (1997).ADSGoogle Scholar
  17. 17.
    R. Baier, M. Dirks, K. Redlich, and D. Schiff, Preprint HEP-PH/9704262.Google Scholar
  18. 18.
    R. Baier, M. Dirks, and K. Redlich, Contribution to the XXXLII Cracow School (to appear in Acta. Phys. Pol.), Preprint HEP-PH/9711213.Google Scholar
  19. 19.
    M. E. Carrington, H. Defu, and M. H. Thoma, Preprint HEP-PH/9708363.Google Scholar
  20. 20.
    A. Niégawa, Preprint HEP-TH/9709140, OCU-PHYS-166.Google Scholar
  21. 21.
    R. D. Pisarski, Phys. Rev. Lett 63, 1129 (1989).CrossRefADSGoogle Scholar
  22. 22.
    E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569 (1990).CrossRefADSGoogle Scholar
  23. 23.
    J. Frenkel and J. C. Taylor, Nucl. Phys. B334, 199 (1990).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    R. Kobes, G. Kunstatter, and K. W. Mak, Z. Phys. C45, 129 (1989).Google Scholar
  25. 25.
    R. Kobes, G. Kunstatter, and A. Rebhan, Phys. Rev. Lett 64, 2992 (1990).CrossRefADSGoogle Scholar
  26. 26.
    H. A. Weldon, preprint HEP-PH/9701279.Google Scholar
  27. 27.
    K.-C. Chou, Z.-B. Su, B.-L. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    A. J. Niemi, Phys. Lett. B203, 425 (1988).ADSMathSciNetGoogle Scholar
  29. 29.
    J-P, Blaizot, E. Iancu, and J-Y. Ollitrault, in Quark-Gluon Plasma II, edited by R. Hwa (World Scientific, Singapore, 1995).Google Scholar
  30. 30.
    E. Calzetta and B. L. Hu, Phys. Rep. D37, 2878 (1988).ADSMathSciNetGoogle Scholar
  31. 31.
    J. F. Donoghue and B. R. Holstein, Phys. Rep. D28, 340 (1983) and D29, 3004 (1984).ADSGoogle Scholar
  32. 32.
    J. F. Donoghue, B. R. Holstein, and R. W. Robinet, Ann. Phys. 164, 233 (1985).CrossRefADSGoogle Scholar
  33. 33.
    W. Keil and R. L. Kobes, Physica A158, 47 (1989).ADSGoogle Scholar
  34. 34.
    M. Le Bellac and D. Poizat, Z. Phys. C47, 125 (1990).Google Scholar
  35. 35.
    R. L. Kobes and G. W. Semenoff, Nucl. Phys. B260, 714 (1985).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Ivan Dadić
    • 1
  1. 1.Ruder Bošković InstituteZagrebCroatia

Personalised recommendations