The use of statistical mechanics to describe hadron production in high energy collisions

  • Francesco Becattini
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 516)


In these lecture notes the application of statistical mechanics to describe hadron production in high energy collisions is reviewed. Special emphasis is given to the necessary assumptions and to point out what can be and what cannot be predicted within this framework. The present status of data analysis is summarized and future tests of the model are outlined; some critical points are addressed.


Partition Function Quark Matter High Energy Collision Canonical Partition Function Average Multiplicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fermi: Progr. Theor. Phys. 5 (1950) 570CrossRefADSMathSciNetGoogle Scholar
  2. 1a.
    L. D. Landau: Izv. Akad. Nauk SSSR, Ser. Fiz. 17 (1953) 51Google Scholar
  3. 1b.
    R. Hagedorn: Nuov. Cim. 15 (1960) 434CrossRefGoogle Scholar
  4. 2.
    T. Sjöstrand: Comp. Phys. Comm. 28 (1983) 229CrossRefADSGoogle Scholar
  5. 2a.
    T. Sjöstrand: Pythia 5.7 and Jetset 7.4, CERN/TH 7112/93 (1993)Google Scholar
  6. 3.
    F. Becattini, U. Heinz: Z. Phys. C 76 (1997) 269.CrossRefGoogle Scholar
  7. 4.
    U. Heinz: talk given at Quark Matter 97, December 1997, Tsukuba (Japan), proc. in press (nucl/th 9801107)Google Scholar
  8. 5.
    F. Becattini: Z. Phys. C 69 (1996) 485.CrossRefGoogle Scholar
  9. 6.
    F. Becattini: Proc. of XXXIII Eloisatron Workshop on Universality feature in multihadron production and the leading effect (1996), p. 74 (hep/ph 9701275)Google Scholar
  10. 7.
    F. Becattini, M. Gazdzicki, J. Sollfrank: hep/ph 9710529, Eur. J. Phys. C in pressGoogle Scholar
  11. 8.
    L. Turko: Phys. Lett. B 104 (1981) 153CrossRefADSMathSciNetGoogle Scholar
  12. 8a.
    M. I. Gorenshtein et al.: Phys. Lett. B 123 (1983) 437CrossRefADSGoogle Scholar
  13. 8b.
    R. Hagedorn, K. Redlich: Z. Phys. C 27 (1985) 541CrossRefADSGoogle Scholar
  14. 9.
    see for instance: J. Cleymans et al.: Phys. Rev. C 57 (1998) 3319 and references therein A. Muronga, J. Cleymans: nucl/th 9709045 and references thereinCrossRefADSGoogle Scholar
  15. 10.
    These are some of the grand-canonical analyses of hadron multiplicities in heavy ion collisions: J. Sollfrank et al.: Z. Phys. C 61 (1994) 659CrossRefADSGoogle Scholar
  16. 10a.
    J. Cleymans et al.: Z. Phys. C 74 (1997) 319CrossRefGoogle Scholar
  17. 10b.
    P. B. Munzinger et al.: Phys. Lett. B 344 (1995) 43CrossRefADSGoogle Scholar
  18. 10c.
    P. B. Munzinger et al.: Phys. Lett. B 365 (1996) 1CrossRefADSGoogle Scholar
  19. 10d.
    J. Letessier, J. Rafelski and A. Tounsi: Phys. Lett. 410 (1997) 315Google Scholar
  20. 10e.
    G. D. Yen, M. I. Gorenstein: nucl/th 9808012Google Scholar
  21. 10f.
    A. S. Kapoyannis, C. N. Ktorides and A. Panagiotou: hep/ph 9806241, submitted to Phys. Rev. DGoogle Scholar
  22. 11.
    F. Becattini: talk given at Quark Matter 97, December 1997, Tsukuba (Japan), proc. in pressGoogle Scholar
  23. 12.
    J. Rafelski: Phys. Lett. B 262 (1991) 333CrossRefADSGoogle Scholar
  24. 12a.
    C. Slotta, J. Sollfrank and U. Heinz: Proc. of Strangeness in Hadronic Matter (1995) p. 462Google Scholar
  25. 13.
    F. Becattini: talk given at Strangeness in Quark Matter 98, July 1998, Padova (Italy)Google Scholar
  26. 14.
    F. Becattini, A. Giovannini, S. Lupia: Z. Phys. C 72 (1996) 491CrossRefADSGoogle Scholar
  27. 15.
    F. Becattini: Proc. of Strangeness in Quark Matter 97, J. Phys. G 23 (1997) 1933CrossRefADSGoogle Scholar
  28. 16.
    M. Aguilar-Benitez et al, NA27 coll.: Z. Phys. C 50 (1991) 405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Francesco Becattini
    • 1
  1. 1.Università di Firenze and INFN Sezione di FirenzeFlorenceItaly

Personalised recommendations