Skip to main content

Simulations of spatially developing plane shear layers and jets

  • Large Eddy And Direct Numerical Simulations
  • Conference paper
  • First Online:
Book cover Fifteenth International Conference on Numerical Methods in Fluid Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 490))

  • 105 Accesses

Abstract

A computational model has been developed for spatially evolving planar shear flows which captures the response of two-dimensional structures in planar shear layers and jets to external forcing. The simulations show that there is an initial increase in the energy transfer to the fluctuating quantities resulting in an increased growth of the layer. However, this increased growth is followed by a region with net transfer of energy from the fluctuating field back to the mean field resulting in a reduced growth of the layer. It appears that the far downstream (xω>100) growth rate of the forced shear layer is only slightly different from the unforced case. The inhibition of pairing in the case of zero phase difference between subharmonic and fundamental that has been seen in temporal simulations was not observed in spatial simulations.

The shear layer growth in the initial region of weak planar jets was found to be sensitive to forcing. The varicose forcing used in this study was sufficient to inhibit the transition into a sinuous jet mode. The symmetry enforced by the varicose forcing lead to significant changes in the structure of the velocity fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.S. Lowery, W. C. Reynolds, and N. N. Mansour. AIAA Paper 87-0123, 1987.

    Google Scholar 

  2. P. Comte, M. Lesieur, H. Laroche, and X. Normand. In Turbulent Shear Flows 6, pages 361–380. Springer-Verlag, 1989.

    Google Scholar 

  3. N. D. Sandham and W. C. Reynolds. In Turbulent Shear Flows 6, pages 441–454. Springer-Verlag, 1989.

    Google Scholar 

  4. J. H. Williamson. J. Comp. Phys., 35:48–56, 1980.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. S. K. Lele. J. Comp. Phys., 103:16–42, 1992.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. M. H. Carpenter, D. Gottlieb, and S. Abarbanel. J. Comp. Phys., 108:272–295, 1993.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. T. Colonius, S. K. Lele, and P. Moin. AIAA Journal, 31(9):1574–1582, September 1993.

    Article  MATH  ADS  Google Scholar 

  8. K. W. Thompson. J. Comp. Phys., 68:1–24, 1987.

    Article  MATH  ADS  Google Scholar 

  9. T. J. Poinsot and S. K. Lele, J. Comp. Phys., 101:104–129, 1992.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. D. H. Rudy and J. C. Strikwerda. J. Comp. Phys., 36:55–70, 1980.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. A. Michalke. J. Fluid Mech., 23(3):521–544, 1965.

    Article  ADS  MathSciNet  Google Scholar 

  12. T. von Kármán, Proc. Nat. Acad. Sci. U.S., 34:530–539, 1948.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paul Kutler Jolen Flores Jean-Jacques Chattot

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Stanley, S., Sarkar, S. (1997). Simulations of spatially developing plane shear layers and jets. In: Kutler, P., Flores, J., Chattot, JJ. (eds) Fifteenth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol 490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107138

Download citation

  • DOI: https://doi.org/10.1007/BFb0107138

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63054-8

  • Online ISBN: 978-3-540-69120-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics