Fast design of transonic airfoils using the euler equations

  • Angelo Iollo
  • Manuel D. Salas
Design Methods
Part of the Lecture Notes in Physics book series (LNP, volume 490)


Euler Equation Adjoint Equation Transonic Flow Adjoint Method Design Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Arian and S. Ta'asan. Multigrid one shot methods for optimal control problems: infinite dimensional control. Technical Report 94–52, ICASE, 1994.Google Scholar
  2. [2]
    F. Beux and A. Dervieux. Exact-gradient shape optimization of a 2D Euler flow. Finite Elements in Analysis and Design, vol. 12:281–302, 1992.Google Scholar
  3. [3]
    F. Beux and A. Dervieux. A hierarchical approach for shape optimization. Technical Report 1868, INRIA, 1993.Google Scholar
  4. [4]
    A. Dervieux, N. Marco, J.M. Malé. J. Périaux, B. Stoufflet, Chen H.Q., and M. Sefrioui. Numerical vs. non-numerical robust optimisers for aerodynamic design using transonic finite-element solvers. AIAA Paper 94-203, 1994.Google Scholar
  5. [5]
    C. Ferrari. Sul problema della fusoliera e dell'ogiva di resistenza d'onda minima. Memorie dell'Accademia delle Scienze di Torino, 1955.Google Scholar
  6. [6]
    A. Iollo, G. Kuruvila, and S. Ta'asan. Pseudo-time method for optimal shape design using the Euler equations. Technical Report 95–59, ICASE, 1995. To appear on AIAA Journal.Google Scholar
  7. [7]
    A. Iollo and M.D. Salas. Contribution to the optimal shape design of two-dimensional internal flows with embedded shocks. Journal of Computational Physics, vol. 124, 1996.Google Scholar
  8. [8]
    A. Iollo and M.D. Salas. Optimum transonic airfoils in Euler flows. Submitted to AIAA Journal.Google Scholar
  9. [9]
    A. Iollo, M.D. Salas, and S. Ta'asan. Shape optimization governed by the Euler equations using an adjoint method. Technical Report 93-78, ICASE, 1993. Proceedings 14th ICNMFD. Lecture notes in Physics 453, Springer Verlag.Google Scholar
  10. [10]
    A. Jameson. Aerodynamic design via control theory. Technical Report 88–64, ICASE, 1988.Google Scholar
  11. [11]
    O. Pironneau. On optimum profiles in Stokes flow. Journal of Fluid Mechanics, vol. 59, 1973.Google Scholar
  12. [12]
    O. Pironneau. On optimum design in fluid mechanics. Journal of Fluid Mechanics, vol. 64, 1974.Google Scholar
  13. [13]
    T.R. Rockafellar. Lagrange multipliers and optimality. SIAM Review, vol. 35:183–238, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    S. Ta'asan. One shot methods for optimal control of distributed parameters systems. Technical Report 91-2, ICASE, 1991.Google Scholar
  15. [15]
    S. Ta'asan. Pseudo-time methods for constrained optimization problems governed by PDE. Technical Report 95-32, ICASE, 1995.Google Scholar
  16. [16]
    S. Ta'asan, G. Kuruvila, and M.D. Salas. Aerodynamic design and optimization in one shot. In 30th Aerospace Sciences Meeting and Exhibit, AIAA 92-005, Jan. 1992.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Angelo Iollo
    • 1
  • Manuel D. Salas
    • 2
  1. 1.DIAS - Politecnico di TorinoTorinoItaly
  2. 2.ICASE - NASA Langley Research CenterHampton

Personalised recommendations