Advertisement

A finite element eulerian approach to the inflight icing problem

  • Y. Bourgault
  • W. G. Habashi
  • J. Dompierre
  • G. Chevalier
Applications
Part of the Lecture Notes in Physics book series (LNP, volume 490)

Abstract

To compute droplet impingement on airfoils, an Eulerian model for air flows containing water droplets is proposed as an alternative to the traditional Lagrangian particle tracking approach. Some finite element formulations are proposed to solve the droplets problem, based on conservative and nonconservative forms of the equations and using different stabilization terms. Numerical results on single and multi-element airfoils are presented.

Keywords

Collection Efficiency Droplet Velocity Inviscid Flow Droplet Impingement Eulerian Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.S. Baruzzi. A Second Order Finite Element Method for the Solution of the Transonic Euler and Navier-Stokes Equations. PhD thesis, Concordia University, Montreal, 1995.Google Scholar
  2. [2]
    S. Boivin and M. Fortin. Int. J. Comp. Fluid Dyn., 1:25–41, 1993.CrossRefGoogle Scholar
  3. [3]
    Y. Bourgault. Méthode d'éléments finis en mécanique des fluides, Conservation et autres propriétés. PhD thesis, Université Laval, Québec, 1996.Google Scholar
  4. [4]
    Y. Bourgault, W.G. Habashi, J. Dompierre, G.S. Baruzzi and G. Chevalier. In Third ECCOMAS Computational Fluid Dynamics Conference, Paris, September 1996. GAMNI/SMAI, CNRS, INRIA.Google Scholar
  5. [5]
    P. Brown and Y. Saad. Technical Report UCRL-97645, Lawrence Livermore National Laboratory, November 1987.Google Scholar
  6. [6]
    C.T. Crowe. Trans. ASME, J. Fluids Engin., 104:297–303, 1982.ADSCrossRefGoogle Scholar
  7. [7]
    F. Durst, D. Milojevic and B. Schonung. Appl. Math. Modelling, 8:101–115, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Hallman, M. Scheurlen and S. Wittig. J. Engin. Gas Turbines and Power, 117:112–119, 1995.CrossRefGoogle Scholar
  9. [9]
    T. Hedde. Modélisation tridimensionnelle des dépôts de givre sur les voilures d'aéronefs. PhD thesis, Université Blaise Pascal, 1992.Google Scholar
  10. [10]
    T.J.R. Hughes and M. Mallet. Comput. Methods Appl. Mech. Engrg., 58:305–328, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    B. Mohammadi. Technical Report RT-0164, INRIA, 1994.Google Scholar
  12. [12]
    E. Omar, T. Zierten, M. Hahn, E. Szpiro and A. Mathal. Technical Report CR-2215, Vol.2, NASA, 1973.Google Scholar
  13. [13]
    G.A. Ruff and B.M. Berkowitz. Technical Report 185129, NASA, 1990.Google Scholar
  14. [14]
    J.N. Scott, W.L. Hankey, F.J. Giessler and T.P. Gielda. J. Aircraft, 25:710–716, 1988.CrossRefGoogle Scholar
  15. [15]
    P. Tran, M.T. Brahimi, F. Tezok and I. Paraschivoiu. AIAA paper 96-0869, January 1996.Google Scholar
  16. [16]
    M.-G. Vallet, J. Dompierre, Y. Bourgault, M. Fortin and W.G. Habashi. In ASME Fluids Engineering Conference, San Diego, CA, July 1996.Google Scholar
  17. [17]
    G.B. Wallis. One-dimensional Two-phase Flow. McGraw-Hill. 1969.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Y. Bourgault
    • 1
  • W. G. Habashi
    • 1
  • J. Dompierre
    • 1
  • G. Chevalier
    • 1
  1. 1.CFD Laboratory, Dept. of Mechanical EngineeringConcordia UniversityMontrealCanada

Personalised recommendations