Advertisement

A directionally adaptive finite element method for hypersonic thermo-chemical nonequilibrium flows

  • D. Ait-Ali-Yahia
  • W. G. Habashi
Applications
Part of the Lecture Notes in Physics book series (LNP, volume 490)

Abstract

A segregated, implicit FEM has been described for 2-D hypersonic thermo-chemical nonequilibrium flows on directionally-adapted structured grids. The flow solver is coupled with an adaptive procedure which is based on an edge-based error estimate and an improved mesh movement strategy with no orthogonality constraints. The segregated approach has the advantage of reducing reacting flow problems with a high number of species to a manageable level and offers the possibility of applying the most appropriate numerical scheme for each system of PDEs in order to achieve the best global convergence. The resulting code is first validated on hypersonic, partially-dissociated nitrogen flow where the shock position is correctly reproduced on a coarse mesh. The methodology is also tested for hypersonic air flows and their main features are well predicted on coarse grids. Future work will involve the study of the multi-temperature model and the introduction of the iterative GMRES solver.

Keywords

Hypersonic Flow Vibrational Temperature Shock Position Translational Temperature Anisotropic Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Peraire, M. Vahdati, K. Morgan and O. C. Zienkiewicz. J. Comp. Phys., 72:449–466 (1987).zbMATHCrossRefADSGoogle Scholar
  2. [2]
    M. Fortin, M.-G. Vallet, D. Poirier and W. G. Habashi. AIAA Paper 94-2221 (1994).Google Scholar
  3. [3]
    D. Ait-Ali-Yahia, W. G. Habashi, A. Tam, M.-G. Vallet and M. Fortin. Int. J. Num. Meth. Fluids, (1996) (in press).Google Scholar
  4. [4]
    S. Eberhardt and K. Brown, AIAA Paper, 86-0231 (1986).Google Scholar
  5. [5]
    M. M. Glaz, P. Colella, J. P. Collins and R. E. Ferguson. AIAA Journal, 26:698–705 (1988).ADSCrossRefGoogle Scholar
  6. [6]
    T. R. A. Bussing and E. M. Murman. AIAA Paper, 85-0331 (1985).Google Scholar
  7. [7]
    C. Park and S. Yoon. Journal of Spacecraft, 28(1):31–39 (1991).ADSCrossRefGoogle Scholar
  8. [8]
    R. W. Walters, P. Cinnella, D. C. Slack and D. Halt. AIAA Journal, 30(5):1304–1313 (1992).zbMATHADSCrossRefGoogle Scholar
  9. [9]
    C. Park, J. Thermo. Heat. Trans., 3(13):233–244 (1989).ADSCrossRefGoogle Scholar
  10. [10]
    D. Ait-Ali-Yahia, W. G. Habashi et al. Advances in Finite Element Analysis in Fluid Dynamics, Vol. 200, 11–19 (1994).Google Scholar
  11. [11]
    G. S. Baruzzi, Ph.D. Thesis, Concordia University, Montreal (1995).Google Scholar
  12. [12]
    R. Löhner, K. Morgan et al. Accuracy Estimates and Adaptive Refinements in Finite Element Computation (1986).Google Scholar
  13. [13]
    J. T. Oden, T. Strouboulis and Ph. Devloo, Int. J. Num. Meth. Fluids, 7:1211–1228 (1987).CrossRefGoogle Scholar
  14. [14]
    K. Nakahashi and G. S. Deiwert. AIAA Journal, 25(4):513–520 (1987).ADSCrossRefGoogle Scholar
  15. [15]
    H. G. Hornung. J. of Fluid Mech., 53(1):149–176 (1972).zbMATHCrossRefADSGoogle Scholar
  16. [16]
    G. V. Candler. AIAA Paper 89-0312 (1989).Google Scholar
  17. [17]
    R. Abgrall, J.-A. Désidéri, R. Glowinski, M. Mallet and J. Périaux. eds., Hypersonic Flows for Reentry Problems (1991).Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • D. Ait-Ali-Yahia
    • 1
  • W. G. Habashi
    • 1
  1. 1.CFD Laboratory, Department of Mechanical EngineeringConcordia UniversityMontrealCanada

Personalised recommendations