Towards higher-order accuracy on arbitrary grids

  • V. Venkatakrishnan
  • Sukumar R. Chakravarthy
Algorithms Navier-Stokes
Part of the Lecture Notes in Physics book series (LNP, volume 490)


Several ways of achieving higher order accuracy on arbitrary grids are explored. These include polynomial reconstructions based on point and cell average values and the Discontinuous Galerkin method, in which the solution is expanded within a cell, and evolution equations are derived for the expansion coefficients. The polynomial reconstruction scheme based on cell averages is also extended to deal with unsteady viscous flows to higher order accuracy.


Mass Matrix Discontinuous Galerkin Discontinuous Galerkin Method Order Accuracy Riemann Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. L. Atkins and C. Shu. AIAA Paper 96-1683, May 1996.Google Scholar
  2. [2]
    T. J. Barth and P. O. Fredrickson. AIAA Paper 90-0013, Jan. 1990.Google Scholar
  3. [3]
    T. J. Barth and D. C. Jespersen. AIAA Paper 89-0366, Jan. 1989.Google Scholar
  4. [4]
    F. Bassi and S. Rebay, CFD CONF., 39 (1996), pp. 1879–1888.Google Scholar
  5. [5]
    K. S. Bey and J. T. Oden. AIAA Paper 91-1575CP, July 1991.Google Scholar
  6. [6]
    B. Cockburn and C. Shu, Math. Comp., 52 (1990), pp. 411–435.CrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Delanaye, P. Geuzaine, J. A. Essers, and P. Rogiest. AGARD Conf. Proceedings 578: Progress and Challenges in CFD Methods and Algorithms, Apr. 1996.Google Scholar
  8. [8]
    L. Fezoui and B. Stoufflet, J. Comp. Phys. 84 (1989), pp. 174–206.zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. [9]
    D. W. Halt and R. K. Agarwal, AIAA J., 30 (1992), pp. 1993–1999.zbMATHADSCrossRefGoogle Scholar
  10. [10]
    A. Harten and S. Chakravarthy. ICASE Report No. 91-76, 1991.Google Scholar
  11. [11]
    M. S. Jensen, Intl. J. for Numer. Meth. in Engrg., 39 (1996), pp. 1879–1888.zbMATHCrossRefGoogle Scholar
  12. [12]
    C. Johnson and J. Pitkäranta, Math. Comp., 46 (1986), pp. 1–26.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    S. Lin and Y. Chin, AIAA J., 31 (1993), pp. 2016–2026.zbMATHCrossRefADSGoogle Scholar
  14. [14]
    R. B. Lowerie, P. L. Roe, and. B. van Leer, A space-time discontinuous Galerkin method for the time-accurate numerical solution of hyperbolic conservation laws. AIAA Paper 95-1658CP, June 1995.Google Scholar
  15. [15]
    K. W. Morton, Proc. 8th ICNMFD, Aachen, Germany, Berlin/New York, 1982, Springer-Verlag, p. 77.Google Scholar
  16. [16]
    J. J. W. van der Vegt and H. van der Ven. AGARD Conf. Proceedings 578: Progress and Challenges in CFD Methods and Algorithms, Apr. 1996.Google Scholar
  17. [17]
    B. van Leer, J. Comp. Phys., 32 (1979), pp. 101–136.CrossRefADSGoogle Scholar
  18. [18]
    V. Venkatakrishnan and D. J. Mavriplis. AIAA-95-1705-CP, 1995, to appear in J. Comp. Phys.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • V. Venkatakrishnan
    • 1
  • Sukumar R. Chakravarthy
    • 2
  1. 1.Institute for Computer Applications in Science and Engineering MS 132CNasa Langley Research CenterHamptonUSA
  2. 2.Metacomp Technologies, Inc.AgouraUSA

Personalised recommendations