Advertisement

A least squares spectral element method for incompressible flow simulations

  • Daniel C. Chan
Algorithms Incompressible Flows
Part of the Lecture Notes in Physics book series (LNP, volume 490)

Keywords

Spectral Element Method Incompressible Viscous Flow Distribute Memory Parallel Computer Order Legendre Polynomial Order Finite Difference Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bo-nan Jiang, T.L. Lin, and Louis Povinelli. Large-scale computation of incompressible viscous flow. Computer Methods in Applied Mechanics and Engineering, 114:213–231, 1994.CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    Daniel C. Chan. A parallel least-squares finite element method for subsonic and supersonic flows. In David Bailey, Petter Bjorstad, John Gilbert, Michael Mascagni, Robert Schreiber, Horst Simon, Virginia Torczon, and Layne Watson, editors, Proceedings of Parallel Processing for Scientific Computing, Philadelphia, 1995. SIAM.Google Scholar
  3. [3]
    Einar M. Rønquist and Anthony Patera. A Legendre spectral element method for the Stefan problem. International Journal for Numerical Methods in Engineering, 24:2273–2299, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    L.I.G. Kovasznay. Laminar flow behind a two-dimensional grid. In Proceedings of the Cambridge Philosophical Society, 1948.Google Scholar
  5. [5]
    Daniel C. Chan. A multi-domain computational method for subsonic viscous flows. AIAA-92-3436, 1992.Google Scholar
  6. [6]
    S. A. Orszag, M. Israeli, and M. O. Deville. Boundary conditions for incompressible flows. Journal of Scientific Computing, 1(1), 1986.Google Scholar
  7. [7]
    Craig Streett. private communication, NASA Langley Research Center, 1995.Google Scholar
  8. [8]
    C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods in Fluid Dynamics. Springer-Verlag, 1988.Google Scholar
  9. [9]
    Partick Beaudan and Parviz Moin. Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Technical Report TF-62, Department of Mechanical Engineering, Stanford University, December 1994.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Daniel C. Chan
    • 1
  1. 1.CFD Technology CenterRocketdyne Division, Rockwell International CorporationCanoga ParkU.S.A.

Personalised recommendations