Advertisement

A positivity-preserving pressure-correction method

  • P. Batten
  • F-S. Lien
  • M. A. Leschziner
Algorithms Euler
Part of the Lecture Notes in Physics book series (LNP, volume 490)

Keywords

Riemann Solver Convergence History Transonic Shock Time Dependent Continuity Moment Turbulence Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. M. Délery. Experimental Investigation of Turbulence Properties in Transonic Shockwave/Boundary-Layer Interactions. AIAA, 21:180–185, 1983.ADSCrossRefGoogle Scholar
  2. [2]
    U. Ghia, K. N. Ghia, and C. T. Shin. High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method. JCP, 48, 1982.Google Scholar
  3. [3]
    U. C. Goldberg. Towards a Pointwise Turbulence Model for Wall-Bounded and Free Shear Flows. ASME Journal of Fluids Engineering, 116(1):72–76, 1994.CrossRefGoogle Scholar
  4. [4]
    A. Harten, P. D. Lax, and B. Van Leer. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Review, 25(1):35–61, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. H. Kobayashi and J. C. F. Pereira. SIMPLENO — A New Characteristic Based Pressure Correction Method for Computation of All Speed Flows. Technical report, Instituto Superior Tecnico, Portugal, 1994.Google Scholar
  6. [6]
    F. S. Lien and M. A. Leschziner. A Pressure-Velocity Solution Strategy for Compressible Flow and its application to Shock/Boundary Layer Interaction Using Second Moment Turbulence Closure. Journal of Fluids Engineering, 115, 1993.Google Scholar
  7. [7]
    F. S. Lien and M. A. Leschziner. Upstream Monotonic Interpolation for Scalar Transport with Application to Complex Turbulent Flows. International Journal for Numerical Methods in Fluids, 19:527–548, 1994.zbMATHCrossRefADSGoogle Scholar
  8. [8]
    J. J. McGuirk and G. J. Page. Shock Capturing Using a Pressure-Correction Method. AIAA Journal, 28(10):1751–1757, 1990.ADSCrossRefGoogle Scholar
  9. [9]
    V. Michelassi. A Pressure Correction Algorithm for All-Speed Flows. Technical report, Institute of Hydromechanik, University of Karlsruhe, Germany, 1994.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • P. Batten
    • 1
  • F-S. Lien
    • 1
  • M. A. Leschziner
    • 1
  1. 1.Dept. of Mechanical EngineeringUMISTUK

Personalised recommendations