Advertisement

Artificial viscosity and the cell vertex method

  • K. W. Morton
  • S. M. Stringer
Algorithms Numerical Techniques
Part of the Lecture Notes in Physics book series (LNP, volume 490)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I.H. Abbott and A.E. von Doenhoff. Theory of Wing Sections. Dover, 1959.Google Scholar
  2. [2]
    P.I. Crumpton, J.A. Mackenzie, and K.W. Morton. Cell vertex algorithms for the compressible Navier-Stokes equations. J. Comput. Phys., 109(1):1–15, 1993.zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. [3]
    M.R. Field. The setting up and solution of the cell vertex equations. PhD thesis, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD., 1994.Google Scholar
  4. [4]
    A. Jameson, W. Schmidt, and E. Turkel. Numerical solutions of the Euler equations by finite volume methods with Runge-Kutta time stepping schemes. AIAA Paper 81-1259, 1981.Google Scholar
  5. [5]
    K.W. Morton. Coercivity for one-dimensional cell vertex approximations. In D.F. Griffiths, J.D. Lambert, G.A. Watson, and G. Fairweather, editors, Numerical Analysis: A R Mitchell 75th Birthday Volume, pages 189–206. World Scientific, 1996.Google Scholar
  6. [6]
    K.W. Morton and S.M. Stringer. Finite volume methods for inviscid and viscous flows, steady and unsteady. In H. Deconinck, editor, Computational Fluid Dynamics, Lecture Series 1995-02, pages 1–63. von Karmen Institute, 1995.Google Scholar
  7. [7]
    K.W. Morton and S.M. Stringer. Recent developments of the cell vertex method. In Sixth International Symposium on Computational Fluid Dynamics. A Collection of Technical Papers, volume II, pages 857–872, 1995. Lake Tahoe, September.Google Scholar
  8. [8]
    K.W. Morton, S.M. Stringer, and M.A. Woodgate. A cell vertex method for 3D Navier-Stokes equations with matrix artificial dissipation and shock detection. In W.H. Hui, Yue-Kuen Kwok, and J.R. Chasnov, editors, First Asian Computational Fluid Dynamics Conference, volume One, pages 41–50. Hong Kong Univ. of Sci. & Tech., 1995.Google Scholar
  9. [9]
    S.M. Stringer and K.W. Morton. Artificial viscosity for the cell vertex method. Technical report, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD., 1996.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • K. W. Morton
    • 1
  • S. M. Stringer
    • 1
  1. 1.ICFD, Oxford University Computing LaboratoryOxfordEngland

Personalised recommendations