Advertisement

Characteristic-based numerical algorithms for stiff hyperbolic relaxation systems

  • Mohit Arora
  • Philip L. Roe
Algorithms Numerical Techniques
Part of the Lecture Notes in Physics book series (LNP, volume 490)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Arora, Design of Characteristic-Based Solution Algorithms for Hyperbolic Conservation Laws with Stiff Source Terms, PhD thesis, The University of Michigan, 1996.Google Scholar
  2. [2]
    M. Arora and P. L. Roe, Design of algorithms for stiff relaxation systems, in Proceedings of the 3rd International Congress on Industrial and Applied Mathematics, Akademie-Verlag, Berlin, 1995, to appear.Google Scholar
  3. [3]
    J. E. Broadwell, Shock structure in a simple discrete velocity gas, Physics of Fluids, 7 (1964), pp. 1243–1247.zbMATHCrossRefADSGoogle Scholar
  4. [4]
    R. Caflisch, S. Jin, and G. Russo, Uniformly accurate schemes for hyperbolic systems with relaxation, SIAM Journal on Numerical Analysis, (1996, to appear).Google Scholar
  5. [5]
    P. Colella and P. R. Woodward, The piecewise-parabolic method (PPM) for gas-dynamical simulations, Journal of Computational Physics, 54 (1984), pp. 174–201.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [6]
    S. Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms, Journal of Computational Physics, 122 (1995).Google Scholar
  7. [7]
    S. Jin and C. D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, Journal of Computational Physics, (1993, submitted).Google Scholar
  8. [8]
    R. B. Pember, Numerical methods for hyperbolic conservation laws with stiff relaxation, II. Higher order Godunov methods, SIAM Journal on Scientific Computing, 14 (1993), pp. 824–859.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. Strang, On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis, 5 (1968), pp. 506–517.zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. [10]
    B. van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe, SIAM Journal on Scientific and Statistical Computing, 5 (1984).Google Scholar
  11. [11]
    H. C. Yee and J. L. Shinn, Semi-implicit and fully implicit shock capturing methods for nonequilibrium flows, AIAA Journal, 27 (1989), pp. 299–307.MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Mohit Arora
    • 1
  • Philip L. Roe
    • 1
  1. 1.W. M. Keck Foundation Laboratory for Computational Fluid Dynamics Department of Aerospace EngineeringThe University of MichiganAnn ArborUSA

Personalised recommendations