A general class of difference approximation for scalar conservation laws converging to the entropy solution and including high resolution ones

  • Aiso Hideaki
Algorithms Numerical Techniques
Part of the Lecture Notes in Physics book series (LNP, volume 490)


Weak Solution Difference Approximation Entropy Solution Entropy Condition Entropy Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Aiso. Admissibility of difference approximation for scalar conservation laws. Hiroshima Math. J., 23(1):15–61, 1993.zbMATHMathSciNetGoogle Scholar
  2. [2]
    R. J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J., 28:244–257, 1979.CrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Engquist and S. Osher. Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp., 34:45–75, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. K. Godunov. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics (in Russian). Mat. Sb. (N.S.), 47:251–306, 1959.MathSciNetGoogle Scholar
  5. [5]
    A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49:357–393, 1983.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [6]
    A. Harten. On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal., 21(1):1–23, 1984.zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. [7]
    P. D. Lax. Weak solution of noninear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math., 7:159–193, 1954.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. D. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure Appl. Math., 13:217–237, 1960.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    O. Oleinik. Discontinuous solutions of nonlinear differential equations. Uspekhi Mat. Nauk. (N.S.), 12:3–73, 1957. English transl. in Amer. Math. Soc. Transl., Ser. 2, vol. 26, 95–172.MathSciNetGoogle Scholar
  10. [10]
    S. Osher and E. Tadmor. On the convergence of difference approximations to scalar conservation laws. Math. Comp., 50:19–51, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    E. Tadmor. Numerical visocosity and the entropy condition for conservative difference schemes. Math. Comp., 43:369–382, 1984.zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Aiso Hideaki
    • 1
  1. 1.Computational Sciences Div.National Aerospace Laboratory JapanTokyoJapan

Personalised recommendations