Advertisement

Nonuniversality of transport for the standard map

  • S. Kassibrakis
  • S. Benkadda
  • R. B. White
  • G. M. Zaslavsky
Kinetics And Statistics
Part of the Lecture Notes in Physics book series (LNP, volume 511)

Abstract

Chaotic transport is investigated for the standard map for different values of stochasticity parameter K. It is found that the form of the transport coefficient is a strong function of K, and that this variation is associated with the formation and disappearance of complex multi-island structures. For some values of the parameter K superdiffusion is associated with the existence of exact chains of self-similar islands attached to accelerator islands, giving rise to long time stickiness of orbits. Close to threshold other types of multi-island structures cause stickiness. In both cases the phase space of these traps, and the exponents of the characteristic long time tails associated with them are determined. Computational procedures for the anomalous exponents and intermediate asymptotics are discussed in many details.

PACS numbers

05.45.+b 47.52.+j 05.60.+w 47.53.+n 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanas'ev V. V., Sagdeev R. Z., and Zaslavsky G. M. (1991): Chaos 1, 143.zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. Afraimovich V. and Zaslavsky G. M. to appear.Google Scholar
  3. Afraimovich V. and Zaslavsky G. M. (1997): Phys. Rev. E 5418.Google Scholar
  4. Beloshapkin V. V., Zaslavsky G. M. (1983): Phys. Rev. A 97, 121.Google Scholar
  5. Benettin G., Galgani L. and Strelcyn J. M. (1976): Phys. Lett. A 14 2338.Google Scholar
  6. Benkadda S., Elskens Y., Ragot B. and Mendonça J. T. (1994): Phys. Rev. Lett. 7 2859.CrossRefADSGoogle Scholar
  7. Benkadda S., Kassibrakis S., White R. B. and Zaslavsky G. M. (1997): Phys. Rev. E 55, 4909.CrossRefADSMathSciNetGoogle Scholar
  8. Benkadda S., Gabbai P. and Zaslavsky G. M. (1997): Phys. of Plasma 4 2864.CrossRefADSMathSciNetGoogle Scholar
  9. Chirikov, B. V. (1979): Phys. Rep. 52, 263.CrossRefADSMathSciNetGoogle Scholar
  10. Chirikov B. V. and Shepeliansky D. L. (1984): Physica D 13 394.CrossRefADSGoogle Scholar
  11. Easton W. Meiss J. D. and Carver S. (1993): Chaos 3 153.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. Green J. M. (1979): J. Math. Phys. 20, 1183.CrossRefADSGoogle Scholar
  13. Hanson J. D., Cary J. R. and Meiss J. D. (1986): Phys. Rev. A 34 2375.CrossRefGoogle Scholar
  14. Ishizaki R., Hata H. and Horita T. (1990) Prog. Theor. Phys. 84 179.zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. Kac M. (1958): Probability and Related Topics in Physical Sciences (Wiley, New York).Google Scholar
  16. Karney C. C. F. (1983): Physica D 8 360.CrossRefADSMathSciNetGoogle Scholar
  17. Klafter J. and Zumofen G. (1994): Phys. Rev. E 49 4873.CrossRefADSGoogle Scholar
  18. Klafter J., Zumofen G. and Shlesinger M. F. (1995) Lévy flights and Related Topics in Physics (Springer) 196.Google Scholar
  19. Meiss J. D. (1997): Chaos 7 139.zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. Meiss J. D. and Ott E. (1986): Physica D 20 387.zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. Montroll E. W. and Shlesinger M. (1984): Studies in Statistical Mechanics II (North-Holland, Amsterdam) 1.Google Scholar
  22. Rechester A. B., Rosenbluth M. N. and White R. B. (1981): Phys. Rev. A 23 2644.CrossRefADSMathSciNetGoogle Scholar
  23. Rechester A. B. and White R. B. (1979): Phys. Let. Rev 42 1247.CrossRefADSGoogle Scholar
  24. Shlesinger M. F. Zaslavsky G. M. and Klafter J. (1993): Nature 363 31.CrossRefADSGoogle Scholar
  25. Sinai Ya. (1963): Soviet Math. Dokl. 4 1818.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • S. Kassibrakis
    • 1
  • S. Benkadda
    • 1
  • R. B. White
    • 2
  • G. M. Zaslavsky
    • 3
    • 4
  1. 1.UMR 6633, CNRS-Université de Provence. Centre de St. Jérôme, Case 321Marseille Cedex 20France
  2. 2.Plasma Physics LaboratoryPrinceton UniversityPrinceton
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew York
  4. 4.Physics DepartmentNew York UniversityNew York

Personalised recommendations