Enhanced velocity diffusion in slow-growing 1-D langmuir turbulence

  • Isidoros Doxas
  • John R. Cary
Plasma And turbulence
Part of the Lecture Notes in Physics book series (LNP, volume 511)


Numerical simulations show an enhancement of the 1-D velocity diffusion coefficient over the quasilinear value in the regime where the autocorrelation time is much smaller than the linear growth time or resonance broadening time. The diffusion enhancement occurs when the resonance broadening time is small compared with the linear growth time. These simulations are self consistent, use a hybrid PIC/spectral symplectic integration method, and have enough modes to be in the continuous spectrum limit. That is, even at the initial amplitudes the intermode spacing is sufficiently small that the resonance overlap parameter is large. A possible mechanism for the enhanced diffusion (spontaneous spectrum discretization) is discussed.


Spontaneous Emission Mode Coupling Vlasov Equation Linear Growth Rate Autocorrelation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Nucl. Fusion Suppl. 2, 465 (1962).Google Scholar
  2. W. E. Drummond and D. Pines, Ann. Phys. (N.Y.) 28, 478 (1964).CrossRefADSGoogle Scholar
  3. Nicholson, D.R., Introduction to Plasma Theory, (John Wiley & Sons, New York, 1983).Google Scholar
  4. Adam, J.C., G. Laval, and D. Pesme, Phys. Rev. Lett. 43, 1671 (1979).CrossRefADSGoogle Scholar
  5. Laval, G. and D. Pesme, Phys. Lett. A 80, 266 (1980).CrossRefADSGoogle Scholar
  6. Laval, G. and D. Pesme, Phys. Fluids 26, 52 (1983).zbMATHCrossRefADSGoogle Scholar
  7. Laval, G. and D. Pesme, Phys. Rev. Lett. 53, 270 (1984).CrossRefADSGoogle Scholar
  8. Goldman, M. V., D. L. Newman, J. G. Wang, and L. Muschietti, Physics Scripta T63, 28 (1996).CrossRefADSGoogle Scholar
  9. M. Kotschenreuther, W. Dorland, M. A. Beer, and G. W. Hamett, Phys. Plasmas 2, 2381 (1995).CrossRefADSGoogle Scholar
  10. A. A. Galeev, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, Sov. Phys. JETP 52, 1095 (1980).ADSGoogle Scholar
  11. Theilhaber, K., G. Laval and D. Pesme, Phys. Fluids 30, 3129 (1987).CrossRefADSGoogle Scholar
  12. Cary, J.R., D. F. Escande, and A. Verga, Phys. Rev. Lett. 65, 3132 (1990).CrossRefADSGoogle Scholar
  13. Tsunoda, S.I., F. Doveil and J.H. Malmberg, Phys. Fluids B 3, 2747 (1991).CrossRefADSGoogle Scholar
  14. Liang, Y. M., and P. H. Diamond, Comments Plasma Phys. Controlled Fusion 15, 139 (1993).Google Scholar
  15. P. Deeskow, K. Elsasser, and F. Jestczemski, Phys. Fluids B 2, 1551 (1991).CrossRefADSGoogle Scholar
  16. O. Ishihara, H. Xia, and A. Hirose, Phys. Fluids B 4, 349 (1992).CrossRefADSGoogle Scholar
  17. Cary, J.R., I. Doxas, D.F. Escande and A.D. Verga, Phys. Fluids B 4, 2062 (1992).CrossRefADSGoogle Scholar
  18. Berndtson, J.T., J.A. Heikkinen, S.J. Karttunen, T.J.H. Pättikangas, and R.R.E. Salomaa, Plasma Phys. Control. Fusion 36, 57 (1994).CrossRefADSGoogle Scholar
  19. Helander, P., and L. Kjellberg, Phys. Plasmas 1, 210 (1994).CrossRefADSGoogle Scholar
  20. D. A. Hartmann, C. F. Driscoll, T. M. O'Neil, and V. D. Shapiro, Phys. Plasmas 2, 654 (1995).CrossRefADSGoogle Scholar
  21. T. M. O'Neil, J.H. Winfrey and J.H. Malmberg, Phys. Fluids 14, 1204 (1971).CrossRefADSGoogle Scholar
  22. Mynick, H.E. and A.N. Kaufman, Phys. Fluids 21, 653 (1978).zbMATHCrossRefADSGoogle Scholar
  23. T. H. Dupree, Phys.Fluids 14, 956 (1966).MathSciNetGoogle Scholar
  24. B. Chirikov, Phys. Rep. 52, 263 (1979).CrossRefADSMathSciNetGoogle Scholar
  25. A. B. Rechester, M. N. Rosenbluth, and R. B. White, Phys. Rev. Lett. 42, 1247 (1979).CrossRefADSGoogle Scholar
  26. Escande, D.F., in Hamiltonian dynamical systems, R.S. MacKay and J.D. Meiss ed. (Adam Hilger, Bristol, 1987).Google Scholar
  27. Cary, J.R., and I. Doxas, J. Comp. Phys. 107, 98 (1993).zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. J. Candy and W. Rozmus, J. Comp. Phys. 92, 230 (1991).zbMATHCrossRefMathSciNetADSGoogle Scholar
  29. E. Forest and R. Ruth, Physica D 43, 105 (1990).zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. Zekri, Stephane, Approche Hamiltonienne de la turbulence faible de Langmuir, Doctoral dissertation, Université de Provence, Marseille-Aix II (1993).Google Scholar
  31. P. H. Stoltz and J. R. Cary, Phys. Plasmas 1, 1817 (1994).CrossRefADSGoogle Scholar
  32. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, (San Francisco Press, Inc. San Francisco, 1986).Google Scholar
  33. S. Ichimaru, Basic Principles of Plasma Physics, A Statistical Approach, (W. A. Benjamin, Reading, MA, 1973).Google Scholar
  34. Guyomarc'h, D., F. Doveil, and A. Guarino, Bull. Am. Phys. Soc. 41, 1458 (1996).Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Isidoros Doxas
    • 1
  • John R. Cary
    • 1
  1. 1.Center for Integrated Plasma Studies and Department of PhysicsUniversity of ColoradoBoulder

Personalised recommendations