Advertisement

Turbulence: Beyond phenomenology

  • A. Tsinober
Flouids And Turbulence
Part of the Lecture Notes in Physics book series (LNP, volume 511)

Abstract

Following a critical overview of the phenomenological aspects a selection of issues which are essentially beyond phenomenology are presented with the emphasis on issues which can be effectively addressed quantitatively via geometrical statistics. In particular, it is argued that regions with concentrated vorticity (tubes-filaments-worms) are not that important as it has been thought before and do not seem to play a special role in the overall dynamics of turbulent flows: these regions are more the consequence rather than the dominating factor of the turbulence dynamics. The ‘random sea’/background, in which are embedded the strongest filaments, appears to be strongly non-Gaussian, not passive and possessing distinct structure. Moreover, apart of enstrophy dominated regions and the background turbulent flows contain other dynamically more important regions. These are the strain dominated regions with the following subregions of special interest: i - regions responsible for the highest enstrophy generation and its rate, and associated with high values of the largest eigenvalue of the rate of strain tensor Λ1, and finite curvature of vortex lines, alignment between vorticity ω and the corresponding eigenvector λ1, ii - regions, which are wrapped around the enstrophy dominated regions and associated with alignment between ω and λ2 and mostly positive values of the intermediate eigenvalue Λ2, and iii - regions with large magnitude of the smallest eigenvalue Λ3, alignment between ω and λ3, large curvature of vortex lines and most of vortex compressing, tilting and folding. Among other issues are reduction of nonlineraity, non-Gaussian nature of turbulence and ‘kinematic’ effects, and nonlocality.

Keywords

Turbulence phenomenology geometrical statistics reduction of nonlinearity nonlocality unresolved issues 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. V. Alekseenko and S. I. Shtork, Russ J. Engn. Thermophys., 2, 231, (1992).Google Scholar
  2. [2]
    P.W. Anderson, Science, 177, 9, (1972); Proc. Natl. Acad. Sci. USA, 192, 6653, (1995).Google Scholar
  3. [3]
    F. Anselmet, Y. Gagne, E. G. Hopfinger and R. A. Antonia, J. Fluid Mech., 140, 63, (1984).ADSGoogle Scholar
  4. [4]
    R. A. Antonia, E. G. Hopfinger, Y. Gagne and F. Anselmet, Phys. Rev., A30, 2704, (1984).ADSGoogle Scholar
  5. [5]
    R. A. Antonia and J. Kim, Phys. Fluids, 6, 834, (1994).ADSGoogle Scholar
  6. [6]
    R. A. Antonia, B. R Satyaprakash and A. J. Chambers, Phys. Fluids, 25, 29, (1982).ADSGoogle Scholar
  7. [7]
    R. A. Antonia, M. Ould-Rouis, Y. Zhu and F. Anselmet, J. Fluid Mech., 332, 395, (1997).zbMATHADSGoogle Scholar
  8. [8]
    R. A. Antonia, Boundary Layer Met., 34, 411, (1986).ADSGoogle Scholar
  9. [9]
    H. Aref, in Whither turbulence? Turbulence at the crossroads, ed. J. L. Lumley, (Springer, 1990), pp. 258–268.Google Scholar
  10. [10]
    H. Aref, Phil. Trans. Roy. Soc. Lond., A333, 273, (1990).ADSGoogle Scholar
  11. [11]
    H. Aref, Phys. Fluids, A3, 1009, (1991).ADSMathSciNetGoogle Scholar
  12. [12]
    A. Arneodo et al., Europhys. Lett., 34, 411, (1996).ADSGoogle Scholar
  13. [13]
    V. I. Arnold, Proc. Roy. Soc. London., A3, 19, (1991).ADSGoogle Scholar
  14. [14]
    Wm. T. Ashurst, A. R. Kerstein, R. A. Kerr and C. H. Gibson, Phys. Fluids, 30, 2343; 30, 3293, (1987).ADSGoogle Scholar
  15. [15]
    C. W. van Atta and R. A. Antonia, Phys. Fluids, 23, 252, (1980).ADSGoogle Scholar
  16. [16]
    G. I. Barenblatt and A. J. Chorin, Comm. Pure and Appl. Math., 50 (L), 381, (1997).MathSciNetGoogle Scholar
  17. [17]
    G. K. Batchelor, Proc. Roy. Soc. Lond., A 213, 349, (1952).ADSMathSciNetGoogle Scholar
  18. [18]
    G. K. Batchelor, The theory of homogeneous turbulence, (Cambridge University Press, 1953).Google Scholar
  19. [19]
    J. T. Beale, T. Kato and A. Majda, Commun. Math. Phys., 94, 61, (1984)zbMATHADSMathSciNetGoogle Scholar
  20. [19a]
    P. Constantin, Commun. Math. Phys., 104, 311, (1986)zbMATHADSMathSciNetGoogle Scholar
  21. [20]
    C. Beck, Phys. Rev., E49, 3641, (1994).ADSMathSciNetGoogle Scholar
  22. [21]
    F. Belin, J. Maurer, P. Tabeling and H. Willame, J. Phys. II France, 6, 573, (1996).Google Scholar
  23. [22]
    F. Belin, P. Tabeling and H. Willame, Physica, D93, 52, (1996).Google Scholar
  24. [23]
    F. Belin, J. Maurer, P. Tabeling and H. Willame, Phys. Fluids, 9, 3843, (1997).ADSGoogle Scholar
  25. [24]
    J. B. Bell and D. L. Marcus, Commun. Math. Phys., 147, 371, (1992).zbMATHADSMathSciNetGoogle Scholar
  26. [25]
    R. Benzi, R., L. Biferale, R. M. Kerr and E. Travatore, Phys. Rev., E53, 3541, (1996).ADSGoogle Scholar
  27. [26]
    R. Benzi, S. Ciliberto, C. Baudet and G. Ruiz-Chavaria 1995, Physica, D80, 385, (1995).Google Scholar
  28. [27]
    V. Berdichevsky, A. Fridlyand and V. Sutyrin, Phys. Rev. Lett., 76, 3967, (1996).ADSGoogle Scholar
  29. [28]
    R. Betchov, Arch. Mech. (Archiwum Mechaniki Stosowanej), 28, 837, (1976).ADSGoogle Scholar
  30. [29]
    M. Blackburn, N. N. Mansour and B. J. Cantwell, J. Fluid Mech., 310, 269, (1996).zbMATHADSMathSciNetGoogle Scholar
  31. [30]
    O. N. Boratav, Phys. Fluids, 9, 1206, (1997).ADSMathSciNetzbMATHGoogle Scholar
  32. [31]
    O. N. Boratav, Phys. Fluids, 9, 3120, (1997).ADSMathSciNetzbMATHGoogle Scholar
  33. [32]
    O. N. Boratav and R. B. Pelz, Phys. Fluids, 9, 1400, (1997).ADSMathSciNetzbMATHGoogle Scholar
  34. [33]
    M. S. Borgas, Phys. Fluids, A4, 2055, (1992).ADSGoogle Scholar
  35. [34]
    M. S. Borgas, and B. L. Sawford, J. Fluid Mech., 279, 69, (1994).zbMATHADSMathSciNetGoogle Scholar
  36. [35]
    M. E. Brachet, Fluid Dyn Res., 8, 1, (1991).ADSGoogle Scholar
  37. [36]
    M. E. Brachet, M. Meneguzzi, A. Vincent, H. Politano and P. L. Sulem, Phys. Fluids, A4, 2845, (1992).ADSGoogle Scholar
  38. [37]
    P. Bradshaw, Experiments in fluids, 16, 203, (1994).ADSGoogle Scholar
  39. [38]
    M. Briscolini and P. Santangelo, J. Fluid Mech, 270, 199 (1994); Advances in turbulence, 5, 41, (1995).zbMATHADSGoogle Scholar
  40. [39]
    F. H. Busse, in Nonlinear Physics of complex systems, eds. J. Parisi and S. C. Müller, (Springer, 1996), pp. 1–9Google Scholar
  41. [40]
    O. Cadot, D. Bonn and S. Douady, Phys. Fluids, 10, 426, (1998).ADSGoogle Scholar
  42. [41]
    O. Cadot, Y. Couder, A. Daerr, S. Douady and A. Tsinober, Phys. Rev., E56, 427, (1997).ADSGoogle Scholar
  43. [42]
    R. Camussi and R. Benzi, Phys. Fluids, 9, 257, (1997).ADSGoogle Scholar
  44. [43]
    D. G. Dritschel, J. Fluid Mech, 216, 657, (1990).MathSciNetGoogle Scholar
  45. [44]
    R. Camussi, C. Baudet, R. Benzi and S. Ciliberto, Phys. Fluids, 8, 1686 (1996).ADSGoogle Scholar
  46. [45]
    R. Camussi, D. Barbagallo, G. Guj and F. Stella, Phys. Fluids, 8, 1181, (1996).ADSGoogle Scholar
  47. [46]
    R. Camussi, and G. Guj, J. Fluid Mech, 348, 177, (1997).ADSMathSciNetGoogle Scholar
  48. [47]
    B. J. Cantwell, Phys. Fluids, A4, 782 (1992); A5, 2008, (1993).ADSMathSciNetGoogle Scholar
  49. [48]
    N. Cao and Chen S., Phys. Rev., E52, R5757, (1996).Google Scholar
  50. [49]
    N. Cao, Chen S. and She, Z.-S., Phys. Rev. Lett., 76, 3711, (1996).ADSGoogle Scholar
  51. [50]
    N. Cao, S. Chen and K. R. Sreenivasan, Phys. Rev. Lett., 77, 3799, (1996).ADSGoogle Scholar
  52. [51]
    Cardoso O., Glukmann B., Parcolet O. and Tabeling P., Physics of Fluids, 8, 209, (1996).ADSGoogle Scholar
  53. [52]
    J. H. Carry, J. R. Herring, J. Loncaric and S. A. Orszag, J. Fluid Mech., 147, 1, (1984).ADSGoogle Scholar
  54. [53]
    B. Chabaud, A. Naert, J. Peinke, F. Chilla, B. Castaing and B.. Herbal, Phys. Rev. Lett., 73, 3227, (1994).ADSGoogle Scholar
  55. [54]
    H. Chen and S. Chen 1988, Phys. Fluids., 10, 312, (1998).ADSGoogle Scholar
  56. [55]
    H. Chen, J. R. Herring R. M. Kerr and R. Kraichnan, 1989, Phys. Fluids, A1, 1844, (1989).ADSGoogle Scholar
  57. [56]
    S. Chen and N. Cao, Phys. Rev. Lett., 78, 3459, (1997).ADSGoogle Scholar
  58. [57]
    S. Chen, K. R. Sreenivasan, and M. Nelkin, Phys. Rev. Lett., 79, 1253, (1997).ADSGoogle Scholar
  59. [58]
    S. Chen, K. R. Sreenivasan, M. Nelkin and N. Cao, Phys. Rev. Lett., 79, 2253, (1997).ADSGoogle Scholar
  60. [59]
    M. Chertkov, G. Falkovich and V. Lebedev, Phys. Rev. Lett., 76, 3707, (1996).ADSGoogle Scholar
  61. [60]
    A. J. Chorin, Comm. Math. Phys., 39, (special issue), 517, (1982).ADSMathSciNetGoogle Scholar
  62. [61]
    A. J. Chorin, Vorticity and Turbulence. (Springer, 1994).Google Scholar
  63. [62]
    A. J. Chorin, Phys. Rev., 54, 2616, (1996).ADSGoogle Scholar
  64. [63]
    W. J. Cocke, Phys. Fluids, 12, 2488, (1969).zbMATHMathSciNetADSGoogle Scholar
  65. [64]
    P. Constantin, SIAM Rev., 36, 73, (1994).zbMATHMathSciNetGoogle Scholar
  66. [65]
    P. Constantin, Lect. Appl. Math., 31, 219, (1996).MathSciNetGoogle Scholar
  67. [66]
    P. Constantin, C. Fefferman and A. J. Majda, Comm. Part. Diff. Eq., 21 (3&4), 559, (1996).zbMATHMathSciNetGoogle Scholar
  68. [67]
    P. Constantin, W. E Constantin and E. S. Titi, Comm. Math. Phys., 165, 207, (1994).zbMATHADSMathSciNetGoogle Scholar
  69. [68]
    S. Corrsin, in Statistical models and turbulence, eds. M. Rosenblatt and C. van Atta, (Springer, 1972), pp.300–316.Google Scholar
  70. [69]
    S. Corrsin, Adv. Geophys, 18A, 25, (1974).ADSGoogle Scholar
  71. [70]
    B. Dhruva, Y. Tsuji and K. R. Sreenivasan, Phys. Rev., E 56, R4928, (1997).Google Scholar
  72. [71]
    P. E. Dimotakis, Progr. Astron. and Aeron., 137, 265, (1991).Google Scholar
  73. [72]
    S. Douady, Y. Couder and M.E. Brachet, Phys. Rev. Lett., 67, 983, (1991).ADSGoogle Scholar
  74. [73]
    E. Dresselhaus and M. Tabor, J. Fluid Mech., 236, 415, (1991).ADSMathSciNetGoogle Scholar
  75. [74]
    B. Dubrulle, J. Phys. II France, 6, 1825, (1996).Google Scholar
  76. [75]
    P. A. Durbin and C. G. Speciale, J. Fluids Engn., 113, 707, (1991).Google Scholar
  77. [76]
    J. G. M. Eggels, F. Unger, M. H. Weiss, J. Westerweel, R. J. Adrian, R. Friedrich and F. T. M. Nieuwstadt, J. Fluid Mech., 268, 175, (1994).ADSGoogle Scholar
  78. [77]
    J. Eggers and S. Grossmann, Phys. Rev., A54, 2360, (1992).ADSGoogle Scholar
  79. [78]
    V. Emsellem, L. Kadanoff, D. Lohse, P. Tabeling and Z. J. Wang, 1997, Phys. Rev., E55, 2672, (1997).ADSGoogle Scholar
  80. [79]
    G. Eyink, Physica., D78, 222, (1994).ADSMathSciNetGoogle Scholar
  81. [80]
    G. Eyink, Phys. Fluids, 6, 3063, (1994).zbMATHADSMathSciNetGoogle Scholar
  82. [81]
    G. Eyink and F. J. Alexander, Phys. Rev. Lett., 78, 2563, (1997).ADSGoogle Scholar
  83. [82]
    G. Eyink, Phys. Rev., E56, 5413, (1997).ADSMathSciNetGoogle Scholar
  84. [83]
    G. Eyink, “Action principle in statistical hydrodynamics”, in Proc. XII th Congr. Math. Phys., Brisbane, Australia, 13–19 July, 1997, in press.Google Scholar
  85. [84]
    G. Falkovich, Phys. Fluids, 6, 1411, (1994).zbMATHADSGoogle Scholar
  86. [85]
    G. Falkovich, I. Kolokolov, V. Lebedev and A. Migdal, Phys. Rev., E54, 4896, (1996).ADSGoogle Scholar
  87. [86]
    G. Falkovich and V. Lebedev, Phys. Rev. Lett., 79, 4159, (1997).ADSGoogle Scholar
  88. [87]
    V. M. Fernandez, N. J. Zabusky and V. M. Gryanik, Fluid Mech., 299, 289, (1995).zbMATHADSMathSciNetGoogle Scholar
  89. [88]
    M. Feigenbaum, in Nonlinear Dynamics, Chaotic and Complex Systems, eds. E. Infeld, R. Zelazny and A. Galkovski, (Springer, 1997), pp. 321–326.Google Scholar
  90. [89]
    R. Feinmann, Lectures on Physics, 2, (Addison-Wesley, 1964), p. 41–12.ADSGoogle Scholar
  91. [90]
    U. Frisch, Turbulence: The legacy of A. N. Kolmogorov, (Cambridge University Press, 1995).Google Scholar
  92. [91]
    U. Frisch and S. A. Orszag, Phys. Today, 9, 24, (1990).Google Scholar
  93. [92]
    A. V. Fursikov and O. Yu Emanuilov, Russian Acad. Sci. Sb. Math, 81, 235, (1995).MathSciNetGoogle Scholar
  94. [93]
    C. Fureby, G. Tabor, H. G. Weller and A. D. Gosman, Phys. Fluids, 9, 1416, (1997).ADSMathSciNetzbMATHGoogle Scholar
  95. [94]
    M. Gad-el-Hak and P. R. Bandyopadhyay, Appl. Mech. Rev., 47, 307, (1994).Google Scholar
  96. [95]
    B. Galanti, I. Procaccia and D. Segel, Phys. Rev., E 54, 5122, (1996).ADSGoogle Scholar
  97. [96]
    S. Garg and Z. Warhaft, Phys. Fluids., 10, 662, (1998).ADSGoogle Scholar
  98. [97]
    W. K. George, in Forum on turbulent flows, eds. Bower, W.M., Morris, M.J. and Samimy, M., FED-Vol. 94, (1990), pp.1–11.Google Scholar
  99. [98]
    S. S. Girimaji and S. B. Pope, J. Fluid Mech., 220, 427, (1990).ADSGoogle Scholar
  100. [99]
    E. Gledzer, E. Villermaux, H. Kahaleras and Y. Gagne, Phys. Fluids, 8, 3367, (1996).zbMATHADSGoogle Scholar
  101. [100]
    R. Grauer, T. Sideris, Physica, D88, 116, (1995).MathSciNetGoogle Scholar
  102. [101]
    J. M. Greene, O. Boratav, Physica, D107, 57, (1997).ADSMathSciNetGoogle Scholar
  103. [102]
    M. S. Grossmann, D. Lohse and A. Reeh, Phys. Fluids, 9, 3817, (1997).ADSGoogle Scholar
  104. [103]
    A. M. Guzmán and C. H. Amon, J. Fluid Mech., 321, 25, (1996).zbMATHADSGoogle Scholar
  105. [104]
    A. Gyr, ed., Structure of turbulence and drag reduction, (Springer, 1990); A. Gyr and H.-W. Bewersdorf, Drag reduction of turbulent flows by additives, (Kluwer, 1995).Google Scholar
  106. [105]
    J. Herwejer and W. van der Water, Advances in Turbulence, 5, 210, (1995)Google Scholar
  107. [105a]
    W. van de Water and J. A. Herwejer, Physica Scripta, T67, 136, (1996)ADSGoogle Scholar
  108. [105b]
    “High order structure functions of turbulence”, J. Fluid Mech., sub judice.Google Scholar
  109. [106]
    Hill R.J, J. Fluid Mech., 353, 67, (1998).Google Scholar
  110. [107]
    P. J. Holmes, G. Berkooz and J. L. Lumley, Turbulence, coherent structures, dynamical systems and symmetry, (Cambridge University Press, 1996).Google Scholar
  111. [108]
    P. J. Holmes, G. Berkooz, J. L. Lumley, J. Mattingly and R. W. Wittenberg, Physics Reports, 287, 337, (1997).ADSMathSciNetGoogle Scholar
  112. [109]
    M. Holzer and E. Siggia, Phys. Fluids, A5, 2525, (1993).ADSGoogle Scholar
  113. [110]
    M. Holzer and E. Siggia, Phys. Fluids, 6, 1820, (1994).zbMATHADSMathSciNetGoogle Scholar
  114. [111]
    E. Hopf, Comm. Pure Appl. Math., 1, 303, (1948).MathSciNetGoogle Scholar
  115. [112]
    I. I. Hosokawa and K. Yamamoto, J. Phys. Soc. Japan, 59, 401, (1989).ADSGoogle Scholar
  116. [113]
    I. I. Hosokawa and S.-I. Ode, Phys. Rev. Lett., 77, 4548, (1996).ADSGoogle Scholar
  117. [114]
    M.-J. Huang, Phys. Fluids, 8, 2203, (1996).ADSGoogle Scholar
  118. [115]
    J. C. R. Hunt and D. J. Carruthers, J. Fluid Mech., 212, 497, (1990).zbMATHADSMathSciNetGoogle Scholar
  119. [116]
    J. C. R. Hunt, J. C. Vassilicos and N. K. R. Kevlahan, Progr. Astron. Aeronaut., 162, 1, (1994).Google Scholar
  120. [117]
    J. C. R. Hunt, A. A. Wray and P. Moin, in Studying Turbulence Using Numerical Simulation DatabasesII, CTR-S88, 193, (1988).Google Scholar
  121. [118]
    I. E. Idelchik, Handbook of hydraulic resistance, (Springer, 1996).Google Scholar
  122. [119]
    J. D. Jacob and Ö. Savas, ZAMP, S46, S699, (1995).Google Scholar
  123. [120]
    J. Jimenez, 1990, Fluid Mech., 218, 265, (1990).ADSGoogle Scholar
  124. [121]
    J. Jimenez, in New Approaches and Concepts in Turbulence, ed. T. Dracos and A. Tsinober, (Birkäuser, Basel, 1993), pp. 95–151.Google Scholar
  125. [122]
    J. Jimenez, CTR-1995 Ann. Res. Briefs, 25, (1995).Google Scholar
  126. [123]
    J. Jimenez, A. A. Wray, P. G. Saffman and R. S. Rogallo, J. Fluid Mech., 255, 65, (1993).zbMATHADSMathSciNetGoogle Scholar
  127. [124]
    J. Jimenez and A. A. Wray, Meccanica, 4, 453, (1994).Google Scholar
  128. [125]
    J. Jimenez, A. A. Wray, CTR-1994 Ann Briefs, 287, (1994).Google Scholar
  129. [126]
    L. Kadanoff, D. Lohse and J. Wang, Phys. Fluids, 7, 617, (1995).zbMATHADSMathSciNetGoogle Scholar
  130. [127]
    H. Kahaleras, Y. Malecot and Y. Gagne, Advances in Turbulence, 6, 235, (1996).Google Scholar
  131. [128]
    Th. von Karman, J. Aeronaut. Sci., 4, 131, (1937).Google Scholar
  132. [129]
    G. G. Katul, M. B. Parlange and C. R. Chu, Phys. Fluids, 6, 2480, (1994).ADSGoogle Scholar
  133. [130]
    G. G. Katul, M. B. Parlange, J. D. Albertson and C. R. Chu, Boundary-Layer Meteorology, 72, 123, (1995).ADSGoogle Scholar
  134. [131]
    L. Keefe, in Near wall turbulence — 1988 Zaric memorial conference, eds. S. J. Kline and H. N. Afagn, (Hemisphere, 1990), pp. 63–80.Google Scholar
  135. [132]
    L. Keefe, P. Moin and J. Kim, J. Fluid Mech., 242, 1, (1992).zbMATHADSMathSciNetGoogle Scholar
  136. [133]
    L. V. Keller and A. A. Fridman, in Proc. First Int. Congr. Appl. Mech., ed. C. B. Biezeno and J. M. Burgers, (Waltman, Delft, 1925), pp. 395–405.Google Scholar
  137. [134]
    R. M. Kerr, J. Fluid Mech., 153, 31, (1985).zbMATHADSGoogle Scholar
  138. [135]
    R. M. Kerr, Phys Fluids, A 5, 1725, (1993); Nonlinearity, 9, 271, (1996).ADSMathSciNetGoogle Scholar
  139. [136]
    R. R. Kerswell, Physica, D100, 355, (1997).ADSGoogle Scholar
  140. [137]
    S. Kida and K. Ohkitani, Phys. Fluids, A4, 1018, (1994).ADSGoogle Scholar
  141. [138]
    S. Kida and M. Takaoka, Annu. Rev. Fluid Mech., 26, 169, (1994).ADSMathSciNetGoogle Scholar
  142. [139]
    J. Kim, P. Moin and R. J. Moser, J. Fluid Mech., 177, 133, (1997).ADSGoogle Scholar
  143. [140]
    S. Kishiba, K. Ohkitani and S. Kida, J. Phys. Soc. Japan, 63, 2133, (1994).ADSGoogle Scholar
  144. [141]
    A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, 30, 19 (1941); English translation: Selected works of A. N. Kolmogorov, I, p. 321, ed. V. M. Tikhomirov, (Kluwer, 1991).Google Scholar
  145. [142]
    A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, 32, 19 (1941); English translation: Selected works of A. N. Kolmogorov, I, p. 324, ed. V. M. Tikhomirov, (Kluwer, 1991).Google Scholar
  146. [143]
    A. N. Kolmogorov, J. Fluid Mech., 13, 82, (1962).zbMATHADSMathSciNetGoogle Scholar
  147. [144]
    A. N. Kolmogorov, “Remarks on statistical solutions of Navier-Stokes equations”, Uspekhi Matematicheskikh Nauk, 33, 124, (1978), in Russian. This section was omitted in the English translation.MathSciNetGoogle Scholar
  148. [145]
    R. H. Kraichnan, Phys. Fluids, 10, 2080, (1967).ADSGoogle Scholar
  149. [146]
    R. H. Kraichnan, Phys. Fluids, 11, 945, (1968).zbMATHMathSciNetADSGoogle Scholar
  150. [147]
    R. H. Kraichnan, J. Fluid Mech., 62, 305, (1974).zbMATHADSMathSciNetGoogle Scholar
  151. [148]
    R. H. Kraichnan, J. Stat. Phys., 51, 949, (1988).zbMATHMathSciNetADSGoogle Scholar
  152. [149]
    R. H. Kraichnan as cited by L. P. Kadanoff in New Perspectives in Turbulence, ed. L.Sirovich, (Springer, 1990), p. 265.Google Scholar
  153. [150]
    R. H. Kraichnan, private communication (1994). Along with rare very strong events the even moments can be sinignificantly affected by regions of unusually small excitation.Google Scholar
  154. [151]
    R. H. Kraichnan, Phys. Rev. Lett., 72, 1016, (1994).ADSGoogle Scholar
  155. [152]
    R. H. Kraichnan, Phys. Rev. Lett., 75, 240, (1995).ADSGoogle Scholar
  156. [153]
    R. H. Kraichnan, Phys. Rev. Lett., 78, 48, (1997).Google Scholar
  157. [154]
    R. H. Kraichnan and Y. Kimura, Progr. Astron. Aeronaut., 162, 19, (1994)Google Scholar
  158. [155]
    R. H. Kraichnan and R. Panda, Phys. Fluids, 31, 2395, (1988).zbMATHADSGoogle Scholar
  159. [156]
    V. R. Kuznetsov, A. A. Praskovsky and V. A. Sabelnikov, J. Fluid Mech., 243, 595, (1992).ADSGoogle Scholar
  160. [157]
    R. Labbe, J.-F. Pinton and S. Fauve, Phys. Fluids, 8, 914; J. Phys. II France, 6, 1099, (1996).Google Scholar
  161. [158]
    S. E. Larsen, “Hot-wire measurements of Atmospheric turbulence near the ground”, Risø-R-233, Risø National Laboratory, Roskilde, Denmark, (1986), 342 pp.Google Scholar
  162. [159]
    S. Le Dizes, M. Rossi and H. K. Moffatt, Phys. Fluids, 8, 2084, (1996).zbMATHADSMathSciNetGoogle Scholar
  163. [160]
    M. Lesieur and O. Metais, Ann. Rev. Fluid Mech., 28, 45, (1996).ADSMathSciNetGoogle Scholar
  164. [161]
    E. Leveque and Z.-S. She, Phys. Rev. Lett., 75, 2690, (1995).ADSGoogle Scholar
  165. [162]
    W. H. Liepmann, Amer. Scientist, 67, 221, (1979).ADSMathSciNetGoogle Scholar
  166. [163]
    E. Lindborg, J. Fluid Mech., 326, 343, (1996).zbMATHADSMathSciNetGoogle Scholar
  167. [164]
    Lomholt S., “Boundary Layer Dynamics in Two-dimensional Flows”, Rosø-I-1063(EN), Risø National Laboratory, Roskilde, Denmark, (1996), 112 pp.Google Scholar
  168. [165]
    J. L. Lumley, in Advances in Turbulence, eds. W. K. George and R. Arndt, (Hemisphere & Springer, 1989), pp. 1–10.Google Scholar
  169. [166]
    V. L'vov and I. Procaccia, Phys. Fluids 8, 2565, (1996).zbMATHADSGoogle Scholar
  170. [167]
    V. L'vov, E. Podivilov and I. Procaccia, Phys. Rev Lett. 79, 2050, (1996).ADSGoogle Scholar
  171. [168]
    N. N. Mansour and A. A. Wray, Phys. Fluids, 6, 808, (1994).zbMATHADSGoogle Scholar
  172. [169]
    H. K. Moffatt, in Whither turbulence? Turbulence at the crossroads, ed. J. L. Lumley, (Springer, 1990), pp. 250–257; in New Approaches and Concepts in Turbulence, ed. T. Dracos and A. Tsinober, (Birkäuser, Basel, 1993), pp. 402–404.Google Scholar
  173. [170]
    H. K. Moffatt and A. Tsinober, Ann. Rev. Fluid Mech., 24, 281, (1992).ADSMathSciNetGoogle Scholar
  174. [171]
    P. Moin and J. Kim, Scientific American, 276, 1, (1997).Google Scholar
  175. [172]
    G. M. Molchan, Phys. Fluids, 9, 2387, (1997).ADSMathSciNetzbMATHGoogle Scholar
  176. [173]
    N. Mordant, J.-F. Pinton and F. Chilla, J. Phys. II France, 7, 1729, (1997).Google Scholar
  177. [174]
    A. S. Monin and A. M. Yaglom, Statistical fluid mechanics, vol. 1, (MIT Press, 1971), 2 nd Russian edition, (Gidrometeoizdat, St. Petersburg, 1992); vol. 2, (MIT Press, 1975), 2 nd Russian edition, (Gidrometeoizdat, St. Petersburg, 1996).Google Scholar
  178. [175]
    L. Mydlarski and Z. Warhaft, J. Fluid Mech., 320, 331, (1996).ADSGoogle Scholar
  179. [176]
    R. Narasimha, in Whither turbulence? Turbulence at the crossroads, ed. J. L. Lumley, (Springer, 1990), pp. 13–48.Google Scholar
  180. [177]
    M. Nelkin 1989, J. Stat. Phys., 54, 1, (1989).MathSciNetzbMATHADSGoogle Scholar
  181. [178]
    M. Nelkin 1995, Phys. Rev., E52, R4610, (1995).Google Scholar
  182. [179]
    J. von Neumann, in Collected works, 6 (1963), pp. 437–472, ed. A. H. Taub, Pergamon.Google Scholar
  183. [180]
    R. Nicodemus, S. Grossmann and M. Holthaus, Phys. Rev. Lett., 79, 4170, (1997).ADSGoogle Scholar
  184. [181]
    K. K. Nomura and G. K. Post, “The structure and dynamics of vorticity and rate-of-strain in incompressible homogeneous turbulence”, J. Fluid Mech., sub judice; K. K. Nomura, G. K. Post and P. Diamesis, AIAA 97-1956, (1997), pp. 1–29.Google Scholar
  185. [182]
    E. A. Novikov, J. Appl. Math. Mech., 27, 1445, (1963).Google Scholar
  186. [183]
    E. A. Novikov, Soviet Physics-Doklady, 12, 1006, (1968).ADSGoogle Scholar
  187. [184]
    E. A. Novikov, Fluid Dyn. Res., 16, 297, (1990).ADSGoogle Scholar
  188. [185]
    A. Noullez, G. Wallace, W. Lempert, R. B. Miles and U. Frisch, J. Fluid Mech., 339, 287, (1997).ADSMathSciNetGoogle Scholar
  189. [186]
    J. O'Neil and C. Meneveau, J. Fluid Mech., 349, 253, (1997).ADSMathSciNetGoogle Scholar
  190. [187]
    A. M. Obukhov, Soviet Phys.-Doklady, 14, 32, (1969).zbMATHADSGoogle Scholar
  191. [188]
    K. Ohkitani, “Time evolution of the enstrophy of a class of three-dimensional Euler flows: the Taylor-Green vortex”, J. Fluid Mech., sub judice.Google Scholar
  192. [189]
    K. Ohkitani and S. Kishiba, Phys. Fluids, 7, 411, (1995).zbMATHADSMathSciNetGoogle Scholar
  193. [190]
    L. Onsager, Nuovo Cimento, VI, Suppl., No.2, 279–287, (1949).Google Scholar
  194. [191]
    S. A. Orszag, in Fluid Dynamics, eds. R. Balian and J.-L. Peube, (Gordon and Breach, 1977), pp. 235–274.Google Scholar
  195. [192]
    A. M. Polyakov, Phys. Rev., E52, 6183, (1995).ADSMathSciNetGoogle Scholar
  196. [193]
    T. Passot, H. Politano, P.-L. Sulem, J. L. Angiella, M. Meneguzzi, J. Fluid Mech., 282, 313, (1992).ADSGoogle Scholar
  197. [194]
    G. Pedrizzetti, A. A. Novikov and A. A. Praskovsky, Phys. Rev., E53, 475, (1996).ADSGoogle Scholar
  198. [195]
    D. H. Porter, A. Pouquet and P. R. Woodward, Lect. Notes Phys., 462, 51, (1995).ADSGoogle Scholar
  199. [196]
    A. A. Praskovsky, E. B. Gledzer, M. Yu. Karyakin and Y. Zhou, J. Fluid Mech., 248, 493, (1993).ADSGoogle Scholar
  200. [197]
    A. A. Praskovsky and S. Onsley, Phys. Fluids, A6, 2886, (1994).ADSGoogle Scholar
  201. [198]
    A. A. Praskovsky, E. Praskovskaya and T. Horst, Phys. Fluids, 9, 2465, (1997).ADSMathSciNetzbMATHGoogle Scholar
  202. [199]
    I. Procaccia, and P. Constantin, Phys. Rev. Lett., 70, 3416, (1993).ADSGoogle Scholar
  203. [200]
    A. Pumir and B. I. Shraiman, Phys. Rev. Lett, 75, 3114, (1995).ADSGoogle Scholar
  204. [201]
    A. Pumir, B. I. Shraiman and E. D. Siggia, Phys. Rev., E55, R1263, (1997).Google Scholar
  205. [202]
    A. Pumir and E. D. Siggia, Phys. Fluids, A2, 220, (1990).ADSMathSciNetGoogle Scholar
  206. [203]
    C. Reyl, T. M. Antonsen and E. Ott, Phys. Rev. Lett, 78, 2559,; Physica, D, 202, (1998).Google Scholar
  207. [204]
    O. Reynolds, Nature., 50, 161, (1894).Google Scholar
  208. [205]
    I. Rogachevskii and N. Kleorin, Phys. Rev., E56, 417, (1997).ADSGoogle Scholar
  209. [206]
    G. Ruiz-Chavaria, C. Baudet and S. Ciliberto, Phys. Rev. Lett., 74, 1986, (1995).ADSGoogle Scholar
  210. [207]
    G. R. Ruetsch and M. R. Maxey, Phys. Fluids, A3, 1587, (1991).ADSGoogle Scholar
  211. [208]
    G. R. Ruetsch and M. R. Maxey, Phys. Fluids, A4, 2747, (1992).ADSGoogle Scholar
  212. [209]
    G. Ruiz-Chavaria, C. Baudet and S. Ciliberto, J. Phys. II, France, 5, 485, (1995).Google Scholar
  213. [210]
    G. Ruiz-Chavaria, C. Baudet and S. Ciliberto, Physica, D99, 369 (1996).Google Scholar
  214. [211]
    S. G. Saddoughi, J. Fluid Mech., 348, 201, (1997).ADSMathSciNetGoogle Scholar
  215. [212]
    S. G. Saddoughi and S. V. Veeravalli, J. Fluid Mech., 268, 333, (1994).ADSGoogle Scholar
  216. [213]
    P. G. Saffman, Lect. Notes Phys., 76, 274, (1978).ADSMathSciNetGoogle Scholar
  217. [214]
    K. W. Schwarz, Phys. Rev. Lett. 64, 415, (1990).ADSGoogle Scholar
  218. [215]
    Z.-S. She, Lect. Notes Phys. 491, 28, (1997).MathSciNetADSGoogle Scholar
  219. [216]
    Z.-S. She, E. Jackson and S. A. Orszag, Nature, 344, 226, (1990).ADSGoogle Scholar
  220. [217]
    Z.-S. She, E. Jackson and S. A. Orszag, Proc. Roy. Soc. Lond., A 434, 101, (1991).ADSGoogle Scholar
  221. [218]
    Z.-S. She and E. Leveque, Phys. Rev. Lett., 72, 336, (1994).ADSGoogle Scholar
  222. [219]
    Z.-S. She, S. Chen, G. Doolen, R. Kraichnan and S. A. Orszag, Phys. Rev. Lett, 70, 3251, (1993).ADSGoogle Scholar
  223. [220]
    B. Shraiman and E. Siggia, Phys. Rev. Lett., 77, 2463, (1996).ADSGoogle Scholar
  224. [221]
    B. Shraiman and E. Siggia, “Fluctuations and mixing of a passive scalar in turbulent flow”, Proceedings of the Cargese 1996 Summer School Mixing, Chaos and Turbulence, in press.Google Scholar
  225. [222]
    L. Shtilman, Phys. Fluids, A4, 197, (1992)ADSGoogle Scholar
  226. [222a]
    L. Shtilman and W. Polifke, Phys.Fluids, A1, 778, (1989).ADSGoogle Scholar
  227. [223]
    L. Shtilman, M. Spector and A. Tsinober, J. Fluid Mech., 247, 65, (1993).zbMATHADSGoogle Scholar
  228. [224]
    E. D. Siggia, J. Fluid Mech., 107, 375, (1981).zbMATHADSGoogle Scholar
  229. [225]
    E. D. Siggia, Phys. Fluids, 24, 1934, (1981).zbMATHADSMathSciNetGoogle Scholar
  230. [226]
    G. M. Smith and T. Wei, J. Fluid Mech., 259, 281, (1994).ADSGoogle Scholar
  231. [227]
    K. R. Sreenivasan, Phys. Fluids, A8, 189, (1996).ADSMathSciNetGoogle Scholar
  232. [228]
    K. R. Sreenivasan and R. Antonia, Ann. Rev. Fluid Mech., 29, 435, (1997).ADSMathSciNetGoogle Scholar
  233. [229]
    K. R. Sreenivasan and G. Stolovitzky, Phys. Rev. Lett., 77, 2718, (1996).ADSGoogle Scholar
  234. [230]
    R. W. Stewart, Radio Sci., 4, 1269, (1969).ADSGoogle Scholar
  235. [231]
    P. Tabeling, G. Zocci F. Belin, J. Maurer and H. Willame, Phys. Rev., E53, 1613, (1996).ADSGoogle Scholar
  236. [232]
    M. Tanaka and S. Kida, Phys. Fluids A 5, 2079–2082, (1993).ADSGoogle Scholar
  237. [233]
    G. I. Taylor, J. Aeronaut. Sci., 4, 311, (1938).Google Scholar
  238. [234]
    G. I. Taylor, Proc. Roy. Soc., A164, 15, (1938).ADSGoogle Scholar
  239. [235]
    H. Tennekes and J. L. Lumley, A first course of turbulence, (MIT Press, 1972).Google Scholar
  240. [236]
    V. M. Tikhomirov, ed., 1991 Selected works of A. N. Kolmogorov, I, p. 487, Kluwer, 1991.Google Scholar
  241. [237]
    A. Townsend, Proc. Roy. Soc., A208, 534, (1951).ADSGoogle Scholar
  242. [238]
    D. Tritton, Physical fluid dynamics, (Clarendon Press, Oxford, 1988).Google Scholar
  243. [239]
    A. Tsinober, Phys. Fluids, A2, 484, (1990).ADSMathSciNetGoogle Scholar
  244. [240]
    A. Tsinober, Progr. Aeron. Astron., 123, 327, (1990).Google Scholar
  245. [241]
    A. Tsinober, in New Approaches and Concepts in Turbulence, ed. T. Dracos and A. Tsinober, (Birkäuser, Basel, 1993), pp. 141–151.Google Scholar
  246. [242]
    A. Tsinober, Lect. Notes Phys, 450, 3, (1995).ADSMathSciNetGoogle Scholar
  247. [243]
    A. Tsinober, Actes du 12e Congrès Francais de Mécanique, 3, 409, (1995).Google Scholar
  248. [244]
    A. Tsinober, J. Fluid Mech., 317, 407, (1996).Google Scholar
  249. [245]
    A. Tsinober, Advances in Turbulence, 6, 263 (1996).Google Scholar
  250. [246]
    A. Tsinober, “Is concentrated vorticity that important?”, Eur. J. Mech., B/Fluids, (1998), in press.Google Scholar
  251. [247]
    A. Tsinober and L. Shtilman, “Rate of change of enstrophy generation. Interaction of vorticity and pressure hessian”, 3rd Eur. Conf. Fluid Mech, Götinngen, Sept 15–18, 1997.Google Scholar
  252. [248]
    A. Tsinober, J. G. M. Eggels and F. T. M. Nieuwstadt, Fluid Dyn. Res., 16, 297, (1995).ADSGoogle Scholar
  253. [249]
    A. Tsinober, E. Kit and T. Dracos, J. Fluid Mech., 242, 169, (1992).ADSGoogle Scholar
  254. [250]
    A. Tsinober, L. Shtilman, A. Sinyavskii and H. Vaisburd, Lect. Notes Phys., 462, 9, (1995)ADSGoogle Scholar
  255. [251]
    A. Tsinober, M. Ortenberg and L. Shtilman, “Geometrical properties of vorticity field in numerical turbulence”, Advances in Turbulence, 7, in press (1998).Google Scholar
  256. [252]
    A. Tsinober, L. Shtilman and H. Vaisburd, Fluid Dyn. Res., 21, 477, (1997).zbMATHMathSciNetADSGoogle Scholar
  257. [253]
    A. Tsinober and H. Vaisburd, Phys. Lett., A197, 293, (1995); Advances in turbulence, 5, 586, (1995)ADSGoogle Scholar
  258. [254]
    S. I. Vainstein, Phys. Rev., E56, 447, (1997).ADSGoogle Scholar
  259. [255]
    J. C. Vassilicos, in Eddy structure identification, ed. J. P. Bonnet, (Springer, 1996), pp. 197–270.Google Scholar
  260. [256]
    M. Vergassola, Phys. Rev., E53, R3021, (1996).Google Scholar
  261. [257]
    A. Verzicco, J. Jimenez and P. Orlandi, J. Fluid Mech., 299, 367, (1995).zbMATHADSMathSciNetGoogle Scholar
  262. [258]
    E. Villermaux, B. Sixou and Y. Gagne, Phys. Fluids, 7, 2008 (1995).ADSMathSciNetGoogle Scholar
  263. [259]
    A. Vincent and M. Meneguzzi, J. Fluid Mech., 225, 1, (1991).zbMATHADSGoogle Scholar
  264. [260]
    A. Vincent and M. Meneguzzi, J. Fluid Mech., 258, 245, (1994).zbMATHADSGoogle Scholar
  265. [261]
    V. Yakhot 1998, Phys. Rev., E57, 1737.ADSGoogle Scholar
  266. [262]
    V. Yakhot and S. A. Orszag, Nuclear Physics, B (Proc. Suppl) 2, 417, (1987).ADSGoogle Scholar
  267. [263]
    A. N. Yannacopoulos, I. Mezic, G. Rowlands and G. P. King, Phys. Rev., E57, 482, (1998).ADSMathSciNetGoogle Scholar
  268. [264]
    V. E. Yanitskii, Sov. Phys.-Doklady, 27, 701, (1982).ADSGoogle Scholar
  269. [265]
    P. K. Yeung, Phys. Fluids, 9, 2981, (1997).ADSGoogle Scholar
  270. [266]
    P. K. Yeung, J. Brasseur and Q. Wang, J. Fluid Mech, 283, 743, (1995).MathSciNetGoogle Scholar
  271. [267]
    L.-P. Wang, S. Chen, J. Brasseur and J. Wyngaard, J. Fluid Mech, 309, 113, (1996).zbMATHADSMathSciNetGoogle Scholar
  272. [268]
    E. R. Weeks, J. S. Urbach and H. L. Swinney, Physica, D 97, 291, (1996).Google Scholar
  273. [269]
    T. Wei and W. W. Willmarth, J. Fluid Mech., 204, 57, (1989).ADSGoogle Scholar
  274. [270]
    I. J. Wygnanski and R. A. Petersen, AIAA J., 25, 201, (1987).ADSGoogle Scholar
  275. [271]
    G. M. Zaslavsky, M. Edelman and B. A. Niyazov, Chaos, 7, 159, (1997).zbMATHADSMathSciNetGoogle Scholar
  276. [272]
    Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaikin and D. D. Sokolov, Sov. Phys.-Uspekhi., 30, 353, (1987).MathSciNetADSGoogle Scholar
  277. [273]
    Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaikin and D. D. Sokolov, Sov. Sci. Rev., C7, 1, (1988).MathSciNetGoogle Scholar
  278. [274]
    Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaikin and D. D. Sokolov, The Almighty Chance, (World Scientific, 1990).Google Scholar
  279. [275]
    J.Y. Zhou, P. K. Yeung and J. G. Brasseur, Phys. Rev., E 53, 1261, (1996).ADSGoogle Scholar
  280. [276]
    Y. Zhu, R. A. Antonia and J. Kim, Phys. Fluids, 8, 838, (1996).zbMATHADSGoogle Scholar
  281. [277]
    O. Zikanov, A. Thess and R. Grauer, Phys. Fluids, 9, 1362, (1997).ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • A. Tsinober
    • 1
  1. 1.Faculty of EngineeringTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations