Sticky orbits of chaotic Hamiltonian dynamics

  • V. Afraimovich
  • G. M. Zaslavsky
Dynamics And Chaos
Part of the Lecture Notes in Physics book series (LNP, volume 511)


Nonuniformity of the phase space of chaotic Hamiltonian dynamics can result from the existence of a sticky set called “Sticky Riddle” (SR) imbedded into the phase space. Fractal and multifractal properties of SR can be described for some simplified situations. Existence of SR imposes similar stickiness for chaotic orbits when they approach the vicinity of SR. As a result, the orbits reveal behavior with power-like tails in the distribution of Poincaré recurrences and exit times, which is unusual for hyperbolic systems. We exploit the generalized fractal dimension to describe the set of recurrences.


Chaos fractals dimensions Poincaré recurrences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.D. Meiss, Rev. Mod. Phys. 64, 795 (1992); Phys. Rev. A. 34, 2375 (1986).CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. [2]
    E. Ott, Chaos in Dynamical Systems, Cambridge Univ. Press, Cambridge, 1993.zbMATHGoogle Scholar
  3. [3]
    G.M. Zaslavsky, Chaos 5, 653 (1995); G.M. Zaslavsky and M. Edelman, Phys. Rev. E 56, No. 5 (1997).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. [4]
    H.G.E. Hentschel and I. Procaccia, Physica D 8, 435 (1983)zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. [4a]
    P. Grassberger and I. Procaccia ibid. 13 34 (1984).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [5]
    U. Frisch and G. Parisi, in Turbulence and Predictability of Geophysical Flows and Climate Dynamics, edited by M. Ghill, R. Benzi, and G. Parisi (North-Holland, Amsterdam, 1985).Google Scholar
  7. [6]
    M.H. Jensen, L.P. Kadanoff, A. Libshaber, I. Procaccia, and J. Stavans, Phys. Rev. Lett. 55, 439 (1985)Google Scholar
  8. [6a]
    T.C. Halsey, M. H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Schraiman, Phys. Rev. A 33, 1141 (1986).CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. [7]
    G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).CrossRefADSMathSciNetGoogle Scholar
  10. [8]
    P. Collet, J.L. Lebowitz, and A. Porzio, J. Stat. Phys. 47, 609(1987).CrossRefMathSciNetADSzbMATHGoogle Scholar
  11. [9]
    Y. Pesin and H. Weiss, Chaos 7, 85(1997).ADSMathSciNetGoogle Scholar
  12. [10]
    Y. Pesin and H. Weiss, Journal of Statistical Physics 86, 233(1997).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. [11]
    G.M. Zaslavsky and M. Tippett, Phys. Rev. Lett. 67, 3251 (1991).CrossRefADSGoogle Scholar
  14. [12]
    B.V. Chirikov and D. Shepelyansky, Physica D 13, 395 (1984).zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. [13]
    G.M. Zaslavsky, M. Edelman, and B. Niyazov, Chaos 7, 159 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. [13a]
    G.M. Zaslavsky and B.A. Niyazov, Phys. Rep. 283, 73 (1997).CrossRefADSGoogle Scholar
  17. [14]
    V. Afraimovich, Chaos, I, 12 (1997).CrossRefADSMathSciNetGoogle Scholar
  18. [15]
    V. Afraimovich, and G.M. Zaslavsky, Phys. Rev. E, 55, 5418(1997).CrossRefADSMathSciNetGoogle Scholar
  19. [16]
    L.S. Young, Ergod. Theory and Dynamical Systems, 2, 109(1982).zbMATHCrossRefGoogle Scholar
  20. [17]
    L. Barreira, Y. Pesin, J. Schmeling, Electromic Research Announc. Amer. Math. Soc. 2, 69 (1996).CrossRefMathSciNetGoogle Scholar
  21. [18]
    J.-P. Eckmann and D. Ruelle, Rev. Modern Phys. 57, 617 (1985).CrossRefADSMathSciNetGoogle Scholar
  22. [19]
    G.M. Shereshevsky, Nonlinearity, 4, 15 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. [20]
    L. Barreira, J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Preprint, (1997).Google Scholar
  24. [21]
    G. M. Zaslavsky, D. Stevens, and H. Weitzner, Phys. Rev. E 48, 1683 (1993).CrossRefADSMathSciNetGoogle Scholar
  25. [22]
    G.M. Zaslavsky, Chaos 4, 25 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. [23]
    G.M. Zaslavsky, Physica D 76, 110 (1994).CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. [24]
    W. de Melo, S. Van Strien, One-dimensional Dynamics, Springer-Verlag, Berlin (1993).zbMATHGoogle Scholar
  28. [25]
    E.B. Vul, Ya.G. Sinai, and K.M. Khanin, in Advanced Series in Nonlinear Dynamics 1: Dynamical Systems (ed. by Ya.G. Sinai), World Scientific, Singapore, 501 (1991).Google Scholar
  29. [26]
    V.K. Melnikov, in Transport, Chaos and Plasma Physics 2 (eds. S. Benkadda, F. Doveil, Y. Elskens) World Scientific, Singapore, 142, (1996).Google Scholar
  30. [27]
    W. Young, A Pumir, and Y. Pomeau, Phys. Fluids A 1, 462 (1989).zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. [28]
    V.V. Afanas'ev, R.Z. Sagdeev, and G.M. Zaslavsky Chaos 1, 143 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. [29]
    S. Benkadda, S. Kassibrakis, R.B. White, and G.M. Zaslavsky, Phys. Rev. E 55, 4909 (1997).CrossRefADSMathSciNetGoogle Scholar
  33. [30]
    G.M. Zaslavsky and M. Edelman, Phys. Rev. E 56, ... (1997).Google Scholar
  34. [31]
    J. Machta, J. Stat. Phys. 32, 555 (1983)CrossRefMathSciNetADSGoogle Scholar
  35. [31a]
    J. Machta and B. Reinhold, ibid. 42, 949 (1986)CrossRefMathSciNetADSGoogle Scholar
  36. [31b]
    J. Machta and R. Zwanzig, Phys. Rev. Lett. 48, 1959 (1983).CrossRefADSMathSciNetGoogle Scholar
  37. [32]
    B. Friedman and R.F. Martin, Jr., Phys. Lett. 105A, 23 (1984).ADSGoogle Scholar
  38. [33]
    A. Zacherl, T. Geisel, and J. Nierwetberg, Phys. Lett. 114A, 317 (1986).ADSGoogle Scholar
  39. [34]
    R.C. Robinson, I. Am. J. Math. 22, 562 (1970); III. Am. J. Math. 22, 897 (1970).CrossRefGoogle Scholar
  40. [35]
    A. Katok and B. Hassenblatt. Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge (1995).zbMATHGoogle Scholar
  41. [36]
    Y. Pesin, Dimension Theory in Dynamical Systems: Rigorous Results and Applicaiton, University of Chicago Press, Chicago, (1997).Google Scholar
  42. [37]
    C. Carathèodory, Nach. Ges. Wiss. Götingen, 406 (1914).Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • V. Afraimovich
    • 1
  • G. M. Zaslavsky
    • 2
    • 3
  1. 1.Department of MathematicsNational Tsing Hua UniversityHsinchuTaiwan 30043, Republic of China
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew York
  3. 3.Department of PhysicsNew York UniversityNew York

Personalised recommendations