Skip to main content

Sticky orbits of chaotic Hamiltonian dynamics

  • Dynamics And Chaos
  • Conference paper
  • First Online:
Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas

Part of the book series: Lecture Notes in Physics ((LNP,volume 511))

Abstract

Nonuniformity of the phase space of chaotic Hamiltonian dynamics can result from the existence of a sticky set called “Sticky Riddle” (SR) imbedded into the phase space. Fractal and multifractal properties of SR can be described for some simplified situations. Existence of SR imposes similar stickiness for chaotic orbits when they approach the vicinity of SR. As a result, the orbits reveal behavior with power-like tails in the distribution of Poincaré recurrences and exit times, which is unusual for hyperbolic systems. We exploit the generalized fractal dimension to describe the set of recurrences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Meiss, Rev. Mod. Phys. 64, 795 (1992); Phys. Rev. A. 34, 2375 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. Ott, Chaos in Dynamical Systems, Cambridge Univ. Press, Cambridge, 1993.

    MATH  Google Scholar 

  3. G.M. Zaslavsky, Chaos 5, 653 (1995); G.M. Zaslavsky and M. Edelman, Phys. Rev. E 56, No. 5 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. H.G.E. Hentschel and I. Procaccia, Physica D 8, 435 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. P. Grassberger and I. Procaccia ibid. 13 34 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. U. Frisch and G. Parisi, in Turbulence and Predictability of Geophysical Flows and Climate Dynamics, edited by M. Ghill, R. Benzi, and G. Parisi (North-Holland, Amsterdam, 1985).

    Google Scholar 

  7. M.H. Jensen, L.P. Kadanoff, A. Libshaber, I. Procaccia, and J. Stavans, Phys. Rev. Lett. 55, 439 (1985)

    Google Scholar 

  8. T.C. Halsey, M. H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Schraiman, Phys. Rev. A 33, 1141 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Collet, J.L. Lebowitz, and A. Porzio, J. Stat. Phys. 47, 609(1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Y. Pesin and H. Weiss, Chaos 7, 85(1997).

    ADS  MathSciNet  Google Scholar 

  12. Y. Pesin and H. Weiss, Journal of Statistical Physics 86, 233(1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. G.M. Zaslavsky and M. Tippett, Phys. Rev. Lett. 67, 3251 (1991).

    Article  ADS  Google Scholar 

  14. B.V. Chirikov and D. Shepelyansky, Physica D 13, 395 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. G.M. Zaslavsky, M. Edelman, and B. Niyazov, Chaos 7, 159 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. G.M. Zaslavsky and B.A. Niyazov, Phys. Rep. 283, 73 (1997).

    Article  ADS  Google Scholar 

  17. V. Afraimovich, Chaos, I, 12 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. Afraimovich, and G.M. Zaslavsky, Phys. Rev. E, 55, 5418(1997).

    Article  ADS  MathSciNet  Google Scholar 

  19. L.S. Young, Ergod. Theory and Dynamical Systems, 2, 109(1982).

    Article  MATH  Google Scholar 

  20. L. Barreira, Y. Pesin, J. Schmeling, Electromic Research Announc. Amer. Math. Soc. 2, 69 (1996).

    Article  MathSciNet  Google Scholar 

  21. J.-P. Eckmann and D. Ruelle, Rev. Modern Phys. 57, 617 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  22. G.M. Shereshevsky, Nonlinearity, 4, 15 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. L. Barreira, J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Preprint, (1997).

    Google Scholar 

  24. G. M. Zaslavsky, D. Stevens, and H. Weitzner, Phys. Rev. E 48, 1683 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  25. G.M. Zaslavsky, Chaos 4, 25 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. G.M. Zaslavsky, Physica D 76, 110 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. W. de Melo, S. Van Strien, One-dimensional Dynamics, Springer-Verlag, Berlin (1993).

    MATH  Google Scholar 

  28. E.B. Vul, Ya.G. Sinai, and K.M. Khanin, in Advanced Series in Nonlinear Dynamics 1: Dynamical Systems (ed. by Ya.G. Sinai), World Scientific, Singapore, 501 (1991).

    Google Scholar 

  29. V.K. Melnikov, in Transport, Chaos and Plasma Physics 2 (eds. S. Benkadda, F. Doveil, Y. Elskens) World Scientific, Singapore, 142, (1996).

    Google Scholar 

  30. W. Young, A Pumir, and Y. Pomeau, Phys. Fluids A 1, 462 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. V.V. Afanas'ev, R.Z. Sagdeev, and G.M. Zaslavsky Chaos 1, 143 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. S. Benkadda, S. Kassibrakis, R.B. White, and G.M. Zaslavsky, Phys. Rev. E 55, 4909 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  33. G.M. Zaslavsky and M. Edelman, Phys. Rev. E 56, ... (1997).

    Google Scholar 

  34. J. Machta, J. Stat. Phys. 32, 555 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Machta and B. Reinhold, ibid. 42, 949 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Machta and R. Zwanzig, Phys. Rev. Lett. 48, 1959 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  37. B. Friedman and R.F. Martin, Jr., Phys. Lett. 105A, 23 (1984).

    ADS  Google Scholar 

  38. A. Zacherl, T. Geisel, and J. Nierwetberg, Phys. Lett. 114A, 317 (1986).

    ADS  Google Scholar 

  39. R.C. Robinson, I. Am. J. Math. 22, 562 (1970); III. Am. J. Math. 22, 897 (1970).

    Article  Google Scholar 

  40. A. Katok and B. Hassenblatt. Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge (1995).

    MATH  Google Scholar 

  41. Y. Pesin, Dimension Theory in Dynamical Systems: Rigorous Results and Applicaiton, University of Chicago Press, Chicago, (1997).

    Google Scholar 

  42. C. Carathèodory, Nach. Ges. Wiss. Götingen, 406 (1914).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sadruddin Benkadda George M. Zaslavsky

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Afraimovich, V., Zaslavsky, G.M. (1998). Sticky orbits of chaotic Hamiltonian dynamics. In: Benkadda, S., Zaslavsky, G.M. (eds) Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas. Lecture Notes in Physics, vol 511. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106953

Download citation

  • DOI: https://doi.org/10.1007/BFb0106953

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64635-8

  • Online ISBN: 978-3-540-69180-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics