Advertisement

Strong variation of global-transport properties in chaotic ensembles

  • Itzhack Dana
  • Tamir Horesh
Dynamics And Chaos
Part of the Lecture Notes in Physics book series (LNP, volume 511)

Abstract

Chaotic transport is studied for Hamiltonians H in which one coordinate, say q, is cyclic (i.e., it does not appear in H), leading to the conservation of the conjugate coordinate (“momentum” p). It is assumed that the dynamics depends nontrivially on the “parameter” p in H. As a consequence, one expects to observe a variation of the global-transport properties, both normal and anomalous, in a generic chaotic ensemble that exhibits all values of p. By considering the realistic model system of charged particles interacting with an electrostatic wave-packet in a uniform magnetic field, it is shown that this variation can be actually quite strong. This finding may have applications to “filtering” sub-ensembles with well-defined values of p.

Keywords

Uniform Magnetic Field Chaotic Region Reflection Symmetry Generic Hamiltonian System Maximal Transport Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasiev, V. V., Sagdeev, R. Z., Zaslavsky, G. M. (1991): CHAOS 1, 143.zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. Afraimovich, V., Zaslavsky, G. M. (1997): Phys. Rev. E 55, 5418.CrossRefADSMathSciNetGoogle Scholar
  3. Cary, J. R., Meiss, J. D. (1981): Phys. Rev. A 24, 2664.CrossRefADSMathSciNetGoogle Scholar
  4. Chirikov, B. V. (1979): Phys. Rep. 52, 263.CrossRefADSMathSciNetGoogle Scholar
  5. Dana, I. (1993): Phys. Rev. Lett. 70, 2387.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. Dana, I. (1994): Phys. Rev. Lett. 73, 1609.CrossRefADSGoogle Scholar
  7. Dana, I., Amit, M. (1995): Phys. Rev. E 51, R2731.Google Scholar
  8. Dana, I., Fishman, S. (1985): Physica (Amsterdam) 17D, 63.ADSMathSciNetGoogle Scholar
  9. Dana, I., Murray, N. W., Percival, I. C. (1989): Phys. Rev. Lett. 62, 233.CrossRefADSMathSciNetGoogle Scholar
  10. Johnson, M. H., Lippmann, B. A. (1949): Phys. Rev. 76, 828.zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. Karney, C. F. F. (1983): Physica (Amsterdam) 8D, 360.ADSMathSciNetGoogle Scholar
  12. MacKay, R. S., Meiss, J. D. (1987): Hamiltonian Dynamical Systems (Adam Hilger, Bristol).zbMATHGoogle Scholar
  13. MacKay, R. S., Meiss, J. D., Percival, I. C. (1984): Physica (Amsterdam) 13D, 55.ADSMathSciNetGoogle Scholar
  14. Meiss, J. D. (1986): Phys. Rev. A 34, 2375.CrossRefADSGoogle Scholar
  15. Meiss, J. D., Ott, E. (1986): Physica (Amsterdam) 20D, 387.ADSMathSciNetGoogle Scholar
  16. Pekarsky, S., Rom-Kedar, V. (1997): Phys. Lett. A 225, 274.zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. Umberger, D. K., Farmer, J. D. (1985): Phys. Rev. Lett. 55, 661.CrossRefADSMathSciNetGoogle Scholar
  18. Shlesinger, M. F., Zaslavsky, G. M., Klafter J. (1993): Nature 363, 31.CrossRefADSGoogle Scholar
  19. Zaslavsky, G. M. (1991): CHAOS 1, 1.zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. Zaslavsky, G. M., Edelman, M., Niyazov, B. A. (1997): CHAOS 7, 159.zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. Zaslavsky, G. M., Zakharov, M. Yu., Sagdeev, R. Z., Usikov, D. A., Chernikov, A. A. (1986): Sov. Phys. JETP 64, 294.MathSciNetGoogle Scholar
  22. Zumofen, G., Klafter, J. (1994): Europhys. Lett. 25, 565.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Itzhack Dana
    • 1
  • Tamir Horesh
    • 1
  1. 1.Department of PhysicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations