Advertisement

Classical diffusion in presence of geometrical constraints and/or interactions

  • C. Aslangul
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)

Abstract

Geometrical constraints, boundary conditions and interactions are expected to modify standard classical random motion. Two examples are given: (i) motion of a particle in a long narrow pipe, which can be viewed as a sequence of clusters of small erratic steps separated by long-distance jumps, strongly reminiscent of a Lévy walk at least on a pictorial level. (ii) 1d diffusion of a set of N particles with a hard-core contact interaction. In the first case, according to the nature of the bounces (elastic random, thermal, soft…), the mean square dispersion displays a large variety of asymptotic behaviours: t 2/ln t, t μ … In most cases, the behaviour is superdiffusive; For the N interacting particles on the line, the k th moment of the one-body reduced coordinate distributions behaves as t k/2 at all times. In particular, although ordinary diffusion always occurs, the diffusion constant D strongly depends in a non-intuitive way upon the number N of interacting particles; for the borderline particle, D(N) decreases as 1/ln N whereas for the central one, D(N) decreases as N −1.

Keywords

Diffusion Constant Asymmetric Simple Exclusion Process Ordinary Diffusion Edge Particle Narrow Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aslangul, Cl., Bouchaud, J.-Ph., Georges, A., Pottier, N., Saint-James, D. (1989): Exact Results and Self-Averaging Properties for Random-Random Walks on a One-Dimensional Lattice. J. Stat. Phys. 55, 461–468CrossRefMathSciNetADSGoogle Scholar
  2. Aslangul, Cl., Barthélémy, M., Pottier, N., Saint-James, D. (1990): Microscopic Dynamical Exponents for Random-Random Directed Walk on a One-Dimensional Lattice. J. Stat. Phys. 61, 403–413CrossRefADSGoogle Scholar
  3. van Beijeren, H., Kehr, K. W., Kutner, R. (1983): Diffusion in Concentration Lattice Gases. III. Tracer Diffusion on a One-Dimensional Lattice. Phys. Rev. A. 28, 5711–5723Google Scholar
  4. Bouchaud, J.-Ph., Georges, A. (1990): Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications. Physics Reports 195, 127–293CrossRefADSMathSciNetGoogle Scholar
  5. Brummelhuis, J. A. M., Hilhorst, H. J. (1988): Single-Vacancy Induced Motion of a Tracer Particle in a Two-Dimensional Lattice Gas. J. Stat. Phys. 53, 249–278CrossRefMathSciNetADSGoogle Scholar
  6. Derrida, B. (1983): Velocity and Diffusion Constant of a One-Dimensional Hopping Model. J. Stat. Phys. 31, 433–450CrossRefMathSciNetADSGoogle Scholar
  7. Derrida, B., Domany, E., Mukamel, D. (1992): An Exact Solution of a One-Dimensional Asymmetric Exclusion Model with Open Boundaries. J. Stat. Phys. 69, 667–687zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. Fisher, M. E. (1984): Walks, Walls, Wetting and Melting. J. Stat. Phys. 34, 667–729zbMATHCrossRefADSGoogle Scholar
  9. Gnedenko, B. V., Kolmogorov, A. N. (1954): Limit Distributions for Sums of Independent Random Variables. (Addison-Wesley, Cambridge, Mass.)zbMATHGoogle Scholar
  10. Gradsteyn, I. S., Ryzhik, I. M. (1980): Table of Integrals, Series and Products. (Academic Press, New York)Google Scholar
  11. Harris, T. E. (1965): Diffusion with Collisions between Particles. J. Appl. Prob. 2, 323CrossRefGoogle Scholar
  12. Jepsen, D. W. (1965): Dynamics of a Simple Many-Body System of Hard Rods. J. Math. Phys. 6, 405–413zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. Klafter, J., Drake, J. M., Levitz, P., Blumen, A., Zumofen, G. (1990): Excited State Dynamics in Restricted Geometries. J. of Lumin. 45, 34–39CrossRefGoogle Scholar
  14. Liggett, T. M. (1985): Interacting Particle Systems. (Springer Verlag, New York)zbMATHGoogle Scholar
  15. Mallick, K. (1996): Systèmes hors d'équilibre: quelques résultats exacts (unpublished)Google Scholar
  16. Montroll, E. W., West, B. J. (1979): in Fluctuation Phenomena, edited by E. W. Montroll and J. L. Lebowitz, pp. 61–206 (North-Holland, Amsterdam)Google Scholar
  17. Rödenbeck, C., Kärger, J., Karsten, H. (1998): Calculating Exact Propagators in Single-File Systems via the Reflection Principle. Phys. Rev. E. 57, 4382–4397CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • C. Aslangul
    • 1
  1. 1.Groupe de Physique des SolidesUniversités Paris 7 et Paris 6Paris Cedex 05France

Personalised recommendations