Advertisement

Equilibrium versus non-equilibrium surface diffusion measurements

  • M. C. Tringides
  • M. Gupalo
  • Q. Li
  • X. Wang
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)

Abstract

Surface diffusion coefficients under equilibrium conditions can be measured from the decay of the autocorrelation function of concentration fluctuations monitored within a probe area centered on the plane. Such a method is implemented with the use of the Scanning Tunneling Microscope by recording tunneling current fluctuations in real time. The form and decay constant of the autocorrelation function can be varied as a function of coverage, temperature (i.e., adatom interactions), probe area size (by varying the tip- surface separation) and electric field strength. Experimental results will be presented and compared to theoretical expectations based on Monte Carlo simulations on model systems. On the other hand non-equilibrium experiments are carried out during ordering kinetics (i.e., the evolution of a system from an initial disordered to a final ordered state after a temperature quench) to determine the growth laws. Time dependent non- equilibrium diffusion coefficients are defined under these conditions and their relation to equilibrium diffusion coefficients is clarified in terms of the adsorbate-adsorbate interactions.

Keywords

Correlation Function Probe Area Concentration Fluctuation Current Fluctuation Growth Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, J.R., Gomer, R. (1979): Surf. Sci. 79, 413CrossRefADSGoogle Scholar
  2. Chen, C.J. (1993): “Introduction to Scanning Microscopy”, Oxford University PressGoogle Scholar
  3. Gomer, R. (1973): Surf. Sci. 38, 373CrossRefADSGoogle Scholar
  4. Gupalo, M., Tringides, M.C. (preprint)Google Scholar
  5. Li, Q., Tringides, M.C. (1996): Surf. Sci. 365, 495CrossRefADSGoogle Scholar
  6. Lifshitz, L.M., Slyozov, V.V. (1961): Jour. Phys. Chem. Sol. 19, 35CrossRefADSGoogle Scholar
  7. Lozano, M., Tringides, M. (1995): Europh. Letts. 30, 537CrossRefADSGoogle Scholar
  8. Mouritsen, O.G., Shah, P.J., Andersen, J.V. (1991): Phys. Rev. B 42, 4506CrossRefADSGoogle Scholar
  9. Stroscio, J.A., Eigler, D.M. (1991): Science 254, 1319CrossRefADSGoogle Scholar
  10. Tringides, M.C., Chapter 6, volume 7 in “Chemical Physics of Solid Surfaces and Heterogeneous Catalysis: Phase Transitions and Adsorbate Restructuring of Metal Surfaces”, Eds. D.A. King and D.P. WoodruffGoogle Scholar
  11. Tringides, M.C. (1990): Phys. Rev. Letts. 65, 1372CrossRefADSGoogle Scholar
  12. “Surface Diffusion: Atomistc and Collective Processes” (1997): Proceedings of NATO ASI in Rhodes September 1997 Ed., M.C. Tringides, Plenum New YorkGoogle Scholar
  13. Vattulainen, I., Merikoski, J., Ala Nissila, T., Ying, S.C. (1996): Surf. Sci. Letts. 366, L697Google Scholar
  14. Wang, G.C., Lu, T.M., Lagally, M.G. (1978): Jour. Chem. Phys. 69, 479CrossRefADSGoogle Scholar
  15. Wang, X., Li, Q., Tringides, M.C. (1998): Phys. Rev. B57, 7275ADSGoogle Scholar
  16. Wu, P.K., Tringides, M.C., Lagally, M.G. (1989): Phys. Rev. B 39, 7595CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • M. C. Tringides
    • 1
  • M. Gupalo
    • 1
  • Q. Li
    • 1
  • X. Wang
    • 1
  1. 1.Department of Physics and Ames LaboratoryAmes

Personalised recommendations