Advertisement

Random walks, fractons, and electrons on percolation structures at criticality

  • A. Bunde
  • J. Dräger
  • J. W. Kantelhardt
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)

Abstract

We discuss the localization of random walks, vibrational excitations (”fractons”), and electronic wave functions on self similar percolation clusters at criticality. We show that, contrary to the common belief, the localization behavior of random walks differs basically from the behavior of fractons and electrons. This is seen best in the shortest path (chemical) metric: While the distribution of the probability densities at fixed chemical distance l from the origin of the random walk is very narrow (for fixed time t), the distribution of the amplitudes of fractons and electrons at fixed l from their localization center is logarithmically broad (for eigenfunctions with fixed energy E or frequency w). Here we present two different approaches that account for the different localization phenomena considered. The treatments describe satisfactorily the numerical results, in particular the appearance of different localization regimes and the logarithmic dependence of the crossovers on the number of averaged configurations.

Keywords

Random Walk Localization Behavior Electronic Wave Function Neighbor Site Vibrational Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharony, A., Harris, A.B. (1992): Physica A 191, 365CrossRefADSGoogle Scholar
  2. Aharony, A., Harris, A.B., Entin-Wohlman, O. (1993): Phys. Rev. Lett. 70, 4160CrossRefADSGoogle Scholar
  3. Alexander, S., Orbach, R. (1982): J. Phys. (Paris) Lett. 43, L-625Google Scholar
  4. Bouchaud, J.P., Georges, A. (1990): Phys. Rep. 195, 127CrossRefADSMathSciNetGoogle Scholar
  5. Bunde, A., Havlin, S., Roman, H.E. (1990): Phys. Rev. A 42, 6274CrossRefADSGoogle Scholar
  6. Bunde, A., Roman, H.E., Russ, St., Aharony, A., Harris, A.B. (1992): Phys. Rev. Lett. 69, 3189CrossRefADSGoogle Scholar
  7. Bunde, A., Roman, H.E. (1992): Philos. Mag. B 65, 191CrossRefGoogle Scholar
  8. Bunde, A., Dräger, J. (1995): Phys. Rev. E 52, 53CrossRefADSGoogle Scholar
  9. Bunde, A., Havlin, S. (1996): Eds. Fractals and Disordered Systems, 2nd ed. (Springer Verlag, Heidelberg)zbMATHGoogle Scholar
  10. Deutscher, G., Levy, Y.-E., Souillard, B. (1987): Europhys. Lett. 4, 577CrossRefADSGoogle Scholar
  11. Dräger, J., Russ, St., Bunde, A. (1995): Europhys. Lett. 31, 425CrossRefADSGoogle Scholar
  12. Dräger, J., Bunde, A. (1996): Phys. Rev. E 54, 4596CrossRefADSGoogle Scholar
  13. Eisenberg, E., Havlin, S., Weiss, G.H. (1994): Phys. Rev. Lett. 72, 2827CrossRefADSGoogle Scholar
  14. Havlin, S., Ben-Avraham, D. (1987): Adv. in Phys. 36, 695CrossRefADSGoogle Scholar
  15. Havlin, S. et al. (1985): J. Phys. A18, L719Google Scholar
  16. Harris, A.B., Aharony, A. (1987): Europhys. Lett. 4, 1355CrossRefADSGoogle Scholar
  17. Klafter, J., Zumofen, G., Blumen, A. (1991): J. Phys. A 24, 4835CrossRefADSMathSciNetGoogle Scholar
  18. Kantelhardt, J.W., Bunde, A. (1997): Phys. Rev. E 56, 6693CrossRefADSGoogle Scholar
  19. Kehr, K.W., Kutner, R. (1982): Physica A 110, 535CrossRefADSGoogle Scholar
  20. Kirkpatrick, S., Eggarter, T.P. (1972): Phys. Rev. B 6, 3598CrossRefADSGoogle Scholar
  21. Kramer, B., MacKinnon, A. (1993): Rep. Prog. Phys. 56, 1469CrossRefADSGoogle Scholar
  22. Lambert, C.J., Hughes, G.D. (1991): Phys. Rev. Lett. 66, 1074CrossRefADSGoogle Scholar
  23. Levy, Y.-E., Souillard, B. (1987): Europhys. Lett. 4, 233CrossRefADSGoogle Scholar
  24. Mandal, P., Neumann, A., Jansen, A.G.M., Wyder, P., Deltour, R. (1997): Phys. Rev. B 55, 452CrossRefADSGoogle Scholar
  25. Montagna, M. et al. (1990): Phys. Rev. Lett. 65, 1136CrossRefADSGoogle Scholar
  26. Mookerjee, A., Dasgupta, I., Saha, T. (1995): Int. J. Mod. Phys. B 9, 2989CrossRefADSGoogle Scholar
  27. Nakayama, T., Yakubo, K., Orbach, R.L. (1994): Rev. Mod. Phys. 66, 381CrossRefADSGoogle Scholar
  28. van der Putten, D., Moonen, J.T., Brom, H.B., Brokken-Zijp, J.C.M., Michels, M.A.J. (1992): Phys. Rev. Lett. 69, 494; (1993): ibid 70, 4161CrossRefADSGoogle Scholar
  29. Sahimi, M. (1994): Application of Percolation Theory, Taylor & Francis, LondonGoogle Scholar
  30. O'shaughnessy, B., Procaccia, I. (1985): Phys. Rev. Lett. 54, 455CrossRefADSGoogle Scholar
  31. Stauffer, D., Aharony, A. (1992): Introduction to Percolation Theory, 2nd ed. (Taylor & Francis, London)Google Scholar
  32. Stoll, E., Kolb, M., Courtens, E. (1992): Phys. Rev. Lett. 68, 2472CrossRefADSGoogle Scholar
  33. Tsujimi, Y. et al. (1988): Phys. Rev. Lett. 60, 2757CrossRefADSGoogle Scholar
  34. de Vries, P., de Raedt, H., Lagendijk, A. (1989): Phys. Rev. Lett. 62, 2515CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • A. Bunde
    • 1
  • J. Dräger
    • 1
    • 2
  • J. W. Kantelhardt
    • 1
  1. 1.Institut für Theoretische PhysikJustus-Liebig-Universität GiessenGermany
  2. 2.Institut für Theoretische PhysikUniversität HamburgGermany

Personalised recommendations