Advertisement

Shape and selfsimilarity of diffusion-limited aggregation clusters

Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)

Abstract

Diffusion-limited aggregation (DLA) is a paradigm of disordered, diffusion-controlled growth, with experimental applications ranging from viscous fingering to the growth of biological colonies. An important question still under debate are the shape and the fractal properties of the structure in the asymptotic limit. A related issue is the response of shape to various modifications of the elementary growth rules, such as anisotropy and noise.

Standard and modified off-lattice DLA growth rules were investigated by direct simulation. The global characteristics of the angular moments and the outermost tips were analysed in order to test the selfsimilarity of DLA. The results show a slight but distinct deviation from selfsimilarity, consistent with previous geometric investigations of the completed central portion of DLA aggregates. To study the effect of the particle size, a modified version of DLA, in which the monomer size changes with the particle index, has been simulated. The measured exponents characterizing the cluster geometry differ from the standard DLA values.

Keywords

Seed Particle Angular Moment Growth Rule Viscous Finger Measured Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argoul, F., Arneodo, A., Grasseau, G., Swinney, H.J. (1988): Phys. Rev. Lett. 61, 2558CrossRefADSGoogle Scholar
  2. Argoul, F., Arneodo, A., Elezgaray, J., Grasseau, G., Murenzi, R., Phys. Rev. A41, 5537Google Scholar
  3. Arneodo, A., Argoul, F., Muzy, J.F., Tabard, M. (1992): Physica A188, 217ADSGoogle Scholar
  4. Ball, R.C., Brady, R.M. (1985): J. Phys. A 18, L809Google Scholar
  5. Ball, R.C. (1986): Physica 140A, 62ADSGoogle Scholar
  6. Barker, P.W., Ball, R. (1990): Phys. Rev. A 42, 6289ADSGoogle Scholar
  7. Brener, E., Levine, H., Tu, Y. (1991): Phys. Rev. Lett. 66, 1978CrossRefADSGoogle Scholar
  8. Boularot, H., Albinet, G. (1996): Phys. Rev. E 53, 5106ADSGoogle Scholar
  9. Cafiero, R., Pietronero, L, Vespignani, A. (1993): Phys. Rev. Lett. 70, 3939CrossRefADSGoogle Scholar
  10. Coniglio, A. (1993): Physica A200, 165ADSGoogle Scholar
  11. Hakanishi, H., Family, F. (1985): Phys. Rev. A32, 3606ADSGoogle Scholar
  12. Halsey, T., Leibig, M. (1992): Phys. Rev. A46, 7793ADSGoogle Scholar
  13. Jullien, R., Kolb, M., Botet, R. (1984): J. Physique 45, 395CrossRefGoogle Scholar
  14. Jarecki, J. (1997): Phys. Rev. E56, 3301ADSGoogle Scholar
  15. Kessler, D.A., Koplik, J., Levine, H. (1990): Adv. Phys. 37, 255CrossRefADSGoogle Scholar
  16. Kolb, M. (1984): J. PHysique Lett. 46, L631Google Scholar
  17. Kolb, M. (1987): J. Phys. A 20, L285Google Scholar
  18. Lam, C.H., Kaufman, H., Mandelbrot, B.B. (1995): J. Phys. A 28, L213Google Scholar
  19. Mandelbrot, B.B. (1992): Physica A 191, 95ADSGoogle Scholar
  20. Mandelbrot, B.B., Vespignani, A., Kaufman, H. (1995): MRS (USA) Symp. Proc. Vol. 367, p. 73Google Scholar
  21. Mandelbrot, B.B., Kaufman, H., Vespignani, A., Yekutieli, I. Lam, C.H. (1995): Europhys. Lett. 29, 599CrossRefADSGoogle Scholar
  22. Mandelbrot, B.B., Vespignani, A., Kaufman, H. (1995): Europhys. Lett. 32, 199CrossRefADSGoogle Scholar
  23. Matsushita, M., Sano, M., Hayaskawa, Y., Honjo, H., Sawada, Y. (1984): Phys. Rev. Lett. 53, 286CrossRefADSGoogle Scholar
  24. Meakin, P., Sander, L.M. (1985): Phys. Rev. Lett. 54, 2053CrossRefADSGoogle Scholar
  25. Meakin, P., Vicsek, T. (1985): Phys. Rev. A 32, 685ADSGoogle Scholar
  26. Meakin, P. (1985): J. Phys. A 18, L661Google Scholar
  27. Meakin, P. (1988): “Phase Transitions and Critical Phenomena”, Vol. 12, p. 336, C. Domb and J.L. Lebowitz (Eds.) Academic, LondonGoogle Scholar
  28. Michely, T., Hohage, M., Bott, M., Comsa, G. (1993): Phys. Rev. Lett. 70, 3943CrossRefADSGoogle Scholar
  29. Montag, J.L., Family, F., Vicsek, T. (1985): Phys. Rev. A32, 2558ADSGoogle Scholar
  30. Nittmann, J., Daccord, G., Stanley, H.E. (1985): Nature bf 34, 141CrossRefADSGoogle Scholar
  31. Ohgiwari, M., Matsushita, M., Matsuyama, T. (1992): J. Phys. Soc. Jap. 61, 816CrossRefADSGoogle Scholar
  32. Ossadnik, P. (1992): Phys. Rev. A45, 1058ADSGoogle Scholar
  33. Ossadnik, P., Lee, J. (1993): J. Phys. A26, 6789ADSGoogle Scholar
  34. Plischke, M., Racz, Z. (1984): Phys. Rev. Lett. 53, 415CrossRefADSGoogle Scholar
  35. Roeder, H., Bromann, K., Brune, H., Kern H. (1995): Phys. Rev. Lett. 74, 3217CrossRefADSGoogle Scholar
  36. Turkevitch, L., Scher, H. (1985): Phys. Rev. Lett. 55, 1026CrossRefADSMathSciNetGoogle Scholar
  37. Wang, X., Huang, Y. (1992): Phys. Rev. A46, 5038ADSGoogle Scholar
  38. Wen, W., Lu, K. (1997): Phys. Rev. E55, R2100Google Scholar
  39. Witten, T.A., Sander, L.M. (1981): Phys. Rev. Lett. 47, 1400CrossRefADSGoogle Scholar
  40. Yekutieli, I., Mandelbrot, B.B., Kaufman, H. (1994): J. Phys. A27, 275ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • M. Kolb
    • 1
  1. 1.Laboratoire de Chimie ThéoriqueEcole Normale SuperieureLyon Cedex 07France

Personalised recommendations