Stochastic modelling of ion diffusion in complex systems

  • W. Dieterich
  • O. Dürr
  • P. Pendzig
  • A. Nitzan
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)


Fast ion conduction is known to occur in many solid materials, allowing us to perform fundamental studies of diffusion processes in a variety of structures. After briefly discussing classes of solid ionic conductors with increasing complexity in their structural and transport behaviour, we shall focus on polymer electrolytes. A lattice model is described which emphasizes the asymmetry in the cation-polymer and anion-polymer interactions. Monte-Carlo simulations of the equation of state are supplemented by calculations based on the quasi-chemical approximation. Simulated diffusion constants and their dependence on temperature and ion concentration are compared with recent experiments on PEO (polyethylene oxid)-type conductors.


Polymer Electrolyte Solid State Ionic Point Particle Anion Diffusion Polyethylene Oxid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angell, C. A. (1990): Chem. Rev. 90, 523CrossRefGoogle Scholar
  2. Aniya, M., Okazaki, H., Kobayashi, M. (1990): Phys. Rev. Letters 65, 1474CrossRefADSGoogle Scholar
  3. Allnatt, A. R., Lidiard, A. B. (1987): Rep. Prog. Phys. 50, 373CrossRefADSGoogle Scholar
  4. Barker, J. A. (1952): J. Chem. Phys. 20, 1526CrossRefADSGoogle Scholar
  5. Binder, K. (1995), ed.: Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York, Oxford, 1995)Google Scholar
  6. Blender, R., Dieterich, W. (1987): J. Phys. C 20, 6113CrossRefADSGoogle Scholar
  7. Bruce, P. G., Vincent, C. A. (1993): J. Chem. Soc. Faraday Trans. 89, 3187CrossRefGoogle Scholar
  8. Bunde, A., Ingram, M. D., Maass, P. (1994): J. Non-Cryst. Solids 172–174, 1292Google Scholar
  9. Day, D. E. (1976): J. Non-Cryst. Solids 21, 343CrossRefADSGoogle Scholar
  10. Dieterich, W. (1989): in High Conductivity Solid Ionic Conductors: Recent Trends and Applications, edited by Takahashi, T., (World Scientific Pub. Co.), p. 17Google Scholar
  11. Evangelakis, G. A., Pontikis, V. (1989): Europhys. Lett. 8, 599CrossRefADSGoogle Scholar
  12. Fan, J., Marzke, R. F., Sanchez, E., Angell, C. A. (1994): J. Non-Cryst. Solids 172–174, 1178CrossRefGoogle Scholar
  13. Funke, K. (1993): Progr. Solid St. Chem. 22, 111CrossRefGoogle Scholar
  14. Funke, K., Roling, B., Lange, M. (1998): Solid State Ionics 105, 195CrossRefGoogle Scholar
  15. Gray, F. M. (1991): Solid Polymer Electrolytes (VCH Publishers, New York)Google Scholar
  16. Hsieh, C. H., Jain, H. (1996): J. Non-Cryst. Solids 203, 293CrossRefADSGoogle Scholar
  17. Ingram, M. D. (1987): Phys. Chem. Glasses 28, 215Google Scholar
  18. Jonscher, A. K. (1982): Nature 267, 553Google Scholar
  19. Kaneko, Y., Ueda, A. (1989): Phys. Rev. B 39, 10281CrossRefADSGoogle Scholar
  20. Khant, H. (1991): Ber. Bunsenges. Phys. Chem. 95, 1021Google Scholar
  21. Knödler, D., Pendzig, P., Dieterich, W. (1996): Solid State Ionics 86–88, 29CrossRefGoogle Scholar
  22. Kremer, K., Binder, K. (1988): Comput. Phys. Rep. 7, 259CrossRefADSGoogle Scholar
  23. Laskar, A. L., Chandra, S. (1989), eds.: Superionic Solids and Solid Electrolytes: Recent Trends (Academic Press INC.)Google Scholar
  24. Liang, C. C. (1973): J. Electrochem. Soc. 120, 1289CrossRefGoogle Scholar
  25. Maass, P., Petersen, J., Bunde, A., Dieterich, W., Roman, H. E. (1991): Phys. Rev. Letters 66, 52CrossRefADSGoogle Scholar
  26. Maass, P., Bunde, A., Ingram, M. D. (1992): Phys. Rev. Letters 68, 3064CrossRefADSGoogle Scholar
  27. Maass, P., Pendzig, P. (1998): Solid State Ionics 105, 217CrossRefGoogle Scholar
  28. Mackie, A. D., Panagiotopoulos, A. Z., Kumar, S. K. (1995): J. Chem. Phys. 102, 1014CrossRefADSGoogle Scholar
  29. Maier, J. (1996): Solid State Ionics 86–88, 55CrossRefGoogle Scholar
  30. Murch, G. E., Nowick, A. S. (1984): Diffusion in Crystalline (Academic Press, Orlando)Google Scholar
  31. Ngai, K. L. (1996): J. Non-Cryst. Solids 203, 232CrossRefADSGoogle Scholar
  32. Nowick, A. S., Lim, B. S., Vaysleyb, V. A. (1994): J. Non-Cryst. Solids 172–174, 1243CrossRefGoogle Scholar
  33. Olender, R., Nitzan, A. (1994): J. Chem. Phys. 100, 705; 101, 2338CrossRefADSGoogle Scholar
  34. Pendzig, P., Dieterich, W. (1998): Solid State Ionics 105, 209CrossRefGoogle Scholar
  35. Puin, W., Heitjans, P. (1995): Nanostruct. Mater. 6, 885CrossRefGoogle Scholar
  36. Ratner, M. A., Nitzan, A. (1988): Solid State Ionics 28–30, 3CrossRefGoogle Scholar
  37. Roling, B., Happe, H., Funke, K., Ingram, M. D. (1997): Phys. Rev. Letters 78, 2160CrossRefADSGoogle Scholar
  38. Roman, H. E., Bunde, A., Dieterich, W. (1986): Phys. Rev. B 34, 3439CrossRefADSGoogle Scholar
  39. Roman, H. E., Dieterich, W. (1990): J. Phys. Condensed Matter 2, 8813CrossRefADSGoogle Scholar
  40. Ruiz-Estrada, H., Blender, R., Dieterich, W. (1994): J. Phys.: Condensed Matter 6, 10509CrossRefADSGoogle Scholar
  41. Sapoval, B. (1991): in Fractals and Disordered Systems, edited by Bunde, A., Havlin, S. (Springer, Berlin), p. 207Google Scholar
  42. Shukla, A. K., Sharma, V. (1992): in Solid State Ionics: Materials and Applications, edited by Chowdari, B. V. R., Chandra, S., Singh, S., Srivastava, P. C. (World Scientific, Singapore), p. 91Google Scholar
  43. Siepmann, J. I., Frenkel, D. (1992): Mol. Phys. 75, 59CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • W. Dieterich
    • 1
  • O. Dürr
    • 1
  • P. Pendzig
    • 1
  • A. Nitzan
    • 2
  1. 1.Fakultät für Physik Universität KonstanzKonstanzGermany
  2. 2.School of Chemistry, The Sackler Faculty of ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations