Macroscopic finite size effects in relaxational processes

  • S. Havlin
  • A. Bunde
  • J. Klafter
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)


We present results on dynamical processes that exhibit a stretched exponential relaxation. When the relaxation is a result of two competing exponential processes, the size of the system, although macroscopic, play a dominant role. There exist a crossover time t x that depends logarithmically on the size of the system, above which, the relaxation changes from a stretched exponential to a simple exponential decay. The decay rate also depends logarithmically on the size of the system. These results are relevant to large-scale Monte-Carlo simulations and should be amenable to experiments in low-dimensional macroscopic systems and mesoscopic systems.


Relaxational Process System Size Relaxation Function Finite System Macroscopic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anlauf, J.K. (1984): Phys. Rev. Lett. 52, 1845CrossRefADSGoogle Scholar
  2. Auerbach, R.A., McPherson, G.L. (1986): Phys. Rev. B33, 6815ADSGoogle Scholar
  3. Blumen, A., Klafter, J., Zumofen, G. (1986): in Optical Spectroscopy of Glasses, ed. I. Zchokke (Reidel, Dordrecht)Google Scholar
  4. Bunde, A., Mosely, L.L., Stanley, H.E., Ben-Avraham, D., Havlin, S. (1986): Phys. Rev. A34, 2575ADSGoogle Scholar
  5. Bunde, A., Dräger, J. (1995): Phys. Rev. E52, 52ADSGoogle Scholar
  6. Dräger, J., Bunde, A. (1996): ibid 54, 4596ADSGoogle Scholar
  7. Bunde, A., Havlin, S., Klafter, J., Graff, G., Shehter, A. (1997): Phys. Rev. Lett. 78, 3338CrossRefADSGoogle Scholar
  8. Chamberlin, V., Mozurkewich, G., Orbach, R. (1984): Phys. Rev. Lett. 52, 867CrossRefADSGoogle Scholar
  9. Cohen, M.H., Grest, G.S. (1981): Phys. Rev. B24, 4091ADSGoogle Scholar
  10. Donsker, N.D., Varadhan, S.R.S. (1979): Commun. Pure Appl. Math. 32, 721zbMATHCrossRefMathSciNetGoogle Scholar
  11. Drake, J.M., et al. (1988): Phys. Rev. Lett. 61, 865CrossRefADSGoogle Scholar
  12. Fixman, M. (1984): Phys. Rev. Lett. 52, 791CrossRefADSGoogle Scholar
  13. Funke, K. (1993): Prog. Solid St. Chem. 22, 11CrossRefGoogle Scholar
  14. Götze, W., Sjögren, L. (1992): Rep. Prog. Phys. 55, 241CrossRefGoogle Scholar
  15. Grassberger, P. Procaccia, I. (1982): J. Chem. Phys. 77, 6281CrossRefADSGoogle Scholar
  16. Harris, T.E. (1965): J. Appl. Pro. 2, 323CrossRefGoogle Scholar
  17. Richards, P.M. (1977): Phys. Rev. B16, 1393ADSMathSciNetGoogle Scholar
  18. Alexander, S., Pincus, P. (1978): Phys. Rev. B18, 2011ADSGoogle Scholar
  19. Havlin, S., Dishon, M., Kiefer, J.E., Weiss, G.H. (1984): Phys. Rev. Lett. 53, 407CrossRefADSGoogle Scholar
  20. Jones, A.A. et al. (1983): Macromolecules 16, 658CrossRefADSGoogle Scholar
  21. Jonscher, A.K. (1977): Nature 267, 673CrossRefADSGoogle Scholar
  22. Klafter, J., Zumofen, G., Blumen, A. (1984): J. Phys. Lett. 45, L49Google Scholar
  23. Klafter, J., Shlesinger, M.F. (1986): Proc. Natl. Acad. Sci. U.S.A. 83, 848CrossRefADSGoogle Scholar
  24. Knockenmuss, R., Gudel, H.U. (1987): J. Chem. Phys. 86, 1104CrossRefADSGoogle Scholar
  25. Kohlrausch, R. (1847): Ann Phys. (Leipzig) 12, 393Google Scholar
  26. Li, K.L., et al. (1983): Macromolecules 21, 2940CrossRefADSGoogle Scholar
  27. Mezei, F., Murani, A.P. (1979): J. Magn. Mater. 14, 211CrossRefADSGoogle Scholar
  28. Ngai, K.L. (1979): Comments Solid State Phys. 9, 127; (1980): Comments Solid State Phys. 9, 141Google Scholar
  29. Palmer, R.G., Stein, D.L., Abrahams, E., Anderson, P.W. (1984): Phys. Rev. Lett. 53, 958CrossRefADSGoogle Scholar
  30. Phillips, J.C. (1996): Rep. Prog. Phys. 59, 1133CrossRefADSGoogle Scholar
  31. Phillips, J.C., Rasaiah, J.C., Hubbard, J.B. (1998): Phys. Rev. Lett. 80, 5453CrossRefADSGoogle Scholar
  32. Bunde, A., Havlin, S., Klafter, J. (1998): Phys. Rev. Lett. 80, 5454CrossRefADSGoogle Scholar
  33. Plonka, A. (1986): The Dependent Reactivity of Species in Condensed Matter (Springer-Verlag, New York)Google Scholar
  34. Rasaiah, J.C., Zhu, J., Hubbard, J.B., Rubin, R.J. (1990): J. Chem. Phys. 93, 5768CrossRefADSGoogle Scholar
  35. Scher, H., Bendler, D., Shlesinger, M. (1991): Physics Today, JanuaryGoogle Scholar
  36. Sciortino, F., Tartaglia, P. (1996): Physica A 231, 191CrossRefADSGoogle Scholar
  37. Shlesinger, M.F., Montroll, E.W. (184): Proc. Natl. Acad. Sci. U.S.A. 81, 1280Google Scholar
  38. Webman, I. (1984): Phys. Rev. Lett. 52, 220CrossRefADSMathSciNetGoogle Scholar
  39. Williams, G., Watts, D.C. (1970): Trans. Faraday Soc. 66, 80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • S. Havlin
    • 1
    • 2
  • A. Bunde
    • 1
    • 2
  • J. Klafter
    • 3
  1. 1.Institut für Theoretische Physik IIIJustus-Liebig-Universität GiessenGiessenGermany
  2. 2.Minerva Center and Department of PhysicsBar-Ilan UniversityRamat GanIsrael
  3. 3.School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations