Aspects of the noisy burgers equation

  • H. Fogedby
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)


The noisy Burgers equation describing for example the growth of an interface subject to noise is one of the simplest model governing an intrinsically nonequilibrium problem. In one dimension this equation is analyzed by means of the Martin-Siggia-Rose technique. In a canonical formulation the morphology and scaling behavior are accessed by a principle of least action in the weak noise limit. The growth morphology is characterized by a dilute gas of nonlinear soliton modes with gapless dispersion law Ep 3/2 and a superposed gas of diffusive modes with a gap. The scaling exponents and a heuristic expression for the scaling function follow from a spectral representation.


Saddle Point Burger Equation Diffusive Mode Noise Strength Dynamic Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burgers, J.M., (1974): The Nonlinear Diffusion Equation, (Riedel, Dordrecht)zbMATHGoogle Scholar
  2. Cole, J.D., (1951): Quart. Appl. Math. 9, 22MathSciNetGoogle Scholar
  3. Dashen, R.F., Hasslacher, B., Neveu, A., (1974): Phys. Rev. D 10, 4114CrossRefADSGoogle Scholar
  4. Edwards, S.F., Wilkinson, D.R., (1982): Proc. R. Soc. London A381, 17ADSMathSciNetGoogle Scholar
  5. Fogedby, H.C., (1981): Z. Phys B, 41, 115CrossRefMathSciNetADSGoogle Scholar
  6. Fogedby, H.C., Hedegaard, P., Svane, A., (1985): Physica 132B, 17Google Scholar
  7. Fogedby, H.C., (1994): Phys. Rev. Lett. 73, 2517CrossRefADSGoogle Scholar
  8. Fogedby, H.C., Eriksson, A.B., Mikheev, L.V., (1995): Phys. Rev. Lett. 75, 1883zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. Fogedby, H.C., (1998): Phys. Rev. E 57, 2331 (1998), preprint cond-mat/9709058; Phys. Rev. Lett. 80, 1126 (1998), preprint cond-mat/9709059; Phys. Rev. E April (1998), preprint cond-mat/9710133CrossRefADSMathSciNetGoogle Scholar
  10. Forster, D., Nelson, D.R., Stephen, M.J., (1976): Phys. Rev. Lett. 36, 867CrossRefADSGoogle Scholar
  11. Forster, D., Nelson, D.R., Stephen, M.J., (1977): Phys. Rev. A 16, 732CrossRefADSMathSciNetGoogle Scholar
  12. Halpin-Healy, T., Zhang, Y.-C., (1995): Kinetic roughening phenomena, stochastic growth, directed polymers and all that, Physics Reports 254, 215Google Scholar
  13. Hopf, E., (1950): Comm. Pure Appl. Math. 3, 201zbMATHCrossRefMathSciNetGoogle Scholar
  14. Huse, D.A., Henley, C.L., Fisher, D.S., (1985) Phys. Rev. Lett. 55, 2924CrossRefADSGoogle Scholar
  15. Kardar, M., Parisi, G., Zhang, Y.C., (1986): Phys. Rev. Lett. 56, 889zbMATHCrossRefADSGoogle Scholar
  16. Martin, P.C., Siggia, E.D., Rose, H.A., (1973): Phys. Rev. A 8, 423CrossRefADSGoogle Scholar
  17. Medina, E., Hwa, T., Kardar, M., Zhang, Y.C., (1989): Phys. Rev. A 39, 3053CrossRefADSMathSciNetGoogle Scholar
  18. Zinn-Justin, J., (1989): Quantum Field Theory and Critical Phenomena, (Oxford University Press)Google Scholar
  19. The Jacobian J = |(∂u/∂t)/∂(u)| only contributes to the fluctuations about the saddle point(s) and will not enter in the present discussionGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • H. Fogedby
    • 1
    • 2
  1. 1.Institute of Physics and AstronomyUniversity of AarhusAarhus C
  2. 2.NORDITACopenhagen ØDenmark

Personalised recommendations