Random flights with quenched noise amplitudes

  • R. Kutner
  • P. Maass
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)


We study the random hopping motion of a particle, for which the jump directions vary randomly in time but the jump lengths l (“noise amplitudes”) are fixed in space (quenched disorder). Two cases are considered: I the distribution p(l) of jump lengths has a finite second moment, and II p(l) decays slowly according to a Lévy distribution, p(l)∼l −1−f with 0<f<2. For simplicity we will restrict our study to one-dimension and consider the jump lengths to be correlated over a short distance a around regularly spaced lattice sites. In case I we find that the diffusion coefficient strongly differs from the mean-field result due to the spatial fluctuations of the jump lengths. The diffusion coefficient can nevertheless be calculated from a modified mean field treatment, when the effective probability p eff(l) for the particle to be at a site with jump length l is taken into account. In case II we find that for f≳0.7 the superdiffusion in the quenched case is slowed down in comparison with the annealed case (where the jump lengths are drawn anew at each time step), leading to a novel length-time scaling relation in the interval 0.7≲f≲1.3. This slowing down can again be explained by considering the effective jump-length distribution p eff(l)∼l −1−g in the stationary state, which decays more rapidly than p(l), i.e. gf. For f≳1.3, g becomes larger than 2 and the diffusion becomes normal although p(l) has no finite second moment. A scaling theory is developed that describes the dynamical crossover from the annealed to the quenched situation.


Random Walk Anomalous Diffusion Approximate Theory Annealed Case Boundary Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Binder, K., Heermann, D.W. (1992): Monte Carlo Simulations in Statistical Physics, Springer Series in Solid State Science, Vol. 80, 2nd ed. (Springer, Berlin, Heidelberg)Google Scholar
  2. Boguñá, M., Corral, Á. (1997): Long tailed trapping times and Lévy flights in a self-organized critical granular system. Phys. Rev. Lett. 78, 4950–4953CrossRefADSGoogle Scholar
  3. Bouchaud, J.-P., Georges, A. (1990): Anomalous diffusion in disordered media: Statistical mechanism, models and physical applications. Phys. Rep. 195, 128–293CrossRefADSMathSciNetGoogle Scholar
  4. Bouchaud, J.-P., Sornette, D. (1994): The black-scholes option pricing problem in mathematical finance: Generalizations and extensions for a large class of stochastic processes. J. Phys. I France 4, 863–881CrossRefGoogle Scholar
  5. Bunde, A., Havlin, S. (1996): Percolation I. In Fractals and Disordered Systems, ed. by Bunde A. and Havlin, S. 2nd ed. (Springer, Heidelberg), pp. 51–93.Google Scholar
  6. Christensen, K., Corral, Á., Frette, V., Feder, J., Jøssang, T. (1996): Tracer dispersion in a self-organized critical system. Phys. Rev. Lett. 77, 107–110CrossRefADSGoogle Scholar
  7. Fogedby, H. C. (1994): Lévy flights in random environments. Phys. Rev. Lett. 73, 2517–2520.CrossRefADSGoogle Scholar
  8. Gillis, J. E. and Weiss, G. H. (1970): Expected number of distinct sites visited by a random walk with an infinite variance. J. Math. Phys. 11, 1307–1312.zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. Haus, J. W., Kehr, K. W. (1987): Diffusion in disordered and regular lattices. Phys. Rep. 150, 263–416CrossRefADSGoogle Scholar
  10. Havlin, S., Ben-Avraham, D. (1987): Diffusion in disordered media. Adv. Phys. 36, 695–798CrossRefADSGoogle Scholar
  11. Klafter, J., Shlesinger, M. F., Zumofen, G. (1996): Beyond Brownian Motion. Physics Today 49 (2), 33–39CrossRefGoogle Scholar
  12. Kopf, M., Corinth, C. Haferkamp, O. Nonnenmacher, T. F. (1996): Anomalous diffusion of water in biological tissues. Biophys. Journ. 70, 2950–2958CrossRefADSGoogle Scholar
  13. Kutner, R., Maass, P. (1997): Random walk on a linear chain with a quenched distribution of jump lengths. Phys. Rev. E 55, 71–78CrossRefADSGoogle Scholar
  14. Kutner, R., Maass, P. (1998): Lévy flights with quenched noise amplitudes. J. Phys. A: Math. Gen. 31, 2603–2609zbMATHCrossRefADSGoogle Scholar
  15. Majid, I., Ben-Avraham, D., Havlin, S., Stanley, H. E. (1984): Exact-enumeration approach to random walks on percolation clusters in two dimensions. Phys. Rev. B 30, 1626–1628CrossRefADSGoogle Scholar
  16. Mantegna, R., Stanley, H. E. (1995): Scaling behavior in the economic index. Nature 376, 46–49; (1996): Turbulence and financial markets. Nature 383, 587–588CrossRefADSGoogle Scholar
  17. Ott, A., Bouchaud, J.-P., Langevin, D., Urbach, W. (1990): Anomalous diffusion in “living polymers”: a genuine Lévy flight? Phys. Rev. Lett. 65, 2201–2204CrossRefADSGoogle Scholar
  18. Shlesinger, M. F., Zaslavsky, G. M., Frisch, U., eds. (1995): Lévy Flights and Related Topics in Physics, Lecture Notes in Physics, Vol. 450, (Springer, Berlin, Heidelberg)zbMATHGoogle Scholar
  19. Stauffer, D., Aharony, A. (1992): Introduction to Percolation Theory (Taylor & Francis, London)Google Scholar
  20. Venkataramani, S. C., Antonsen, T. M., Jr., Ott E. (1997): Lévy flights in fluid flows with no Kolmogoroff-Arnold-Moser surfaces. Phys. Rev. Lett. 78, 3864–3867zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. Viswanathan, G. M., Afanasyev, V. Buldyrev, S. V., Murphy, E. J., Prince, P. A., Stanley, H. E. (1996): Lévy flight search patterns of wandering albatrosses. Nature 381, 413–415CrossRefADSGoogle Scholar
  22. Weeks, E. R., Urbach, J. S., Swinney, H. L. (1996): Anomalous diffusion in asymmetric random walks with a quasi-geostrophic flow example. Physica D 97, 291–310.CrossRefGoogle Scholar
  23. Weiss, G. H. and Rubin, R. J. (1983): Random walks: Theory and selected applications. In Adv. Chem. Phys., Vol. LII, ed. by I. Prigogine and S. A. Rice (Wiley, Interscience, New York), pp. 363–505Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • R. Kutner
    • 1
  • P. Maass
    • 2
  1. 1.Department of PhysicsWarsaw UniversityWarsawPoland
  2. 2.Fakultät für PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations