Advertisement

Mean first-passage times and hopping mobility of particles under bias in nonsymmetric potentials

  • K. W. Kehr
  • K. Mussawisade
  • T. Wichmann
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 519)

Abstract

The hopping motion of particles on segments of linear chains is considered, where the transition rates correspond to nonsymmetric potentials. Attention is drawn to the directional dependence of the particle current, for various strengths of the applied bias field. The problem is mainly discussed in connection with the mean first-passage time of particles across the segment. Directional effects are absent in the regime of linear response; they appear for strong bias fields and nonsymmetric potentials which comprise different barriers and site energies. The results are compared with numerical simulations and an exact expression.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astumian, R. D., Bier, M. (1994): Phys. Rev. Lett. 72, 1766CrossRefADSGoogle Scholar
  2. Astumian, R.D. (1997): Science 276, 917CrossRefGoogle Scholar
  3. Biller, R. (1984): Z. Phys. B 55, 7CrossRefADSGoogle Scholar
  4. van den Broeck, C. (1989): in: Noise and nonlinear phenomena in nuclear systems, edited by J.L. Munoz-Cobo and F.C. Difilippo, p. 3 (Plenum, New York)Google Scholar
  5. Dieterich, W., private communicationGoogle Scholar
  6. Derenyi, I., Vicsek, T. (1995): Phys. Rev. Lett. 75, 374CrossRefADSGoogle Scholar
  7. Ehrlich, G., Hudda, F.G. (1966): J. Chem. Phys. 44, 1039CrossRefADSGoogle Scholar
  8. Feynman, R. P., Leighton, R. B., Sands, M. (1966): The Feynman Lectures in Physics, Vol. 1, Chap. 46 (Addison Wesley, Reading, MA)Google Scholar
  9. Johnson, F.H., Eyring, H., Polissar, M. I. (1954): The Kinetic Basis of Molecular Biology, Chapt. 14 (Wiley, New York)Google Scholar
  10. Kehr, K.W., Mussawisade, K., Wichmann, T., Dieterich, W. (1997): Phys. Rev. E 56, R2351Google Scholar
  11. Kehr, K.W., Mussawisade, K., Wichmann, T., Heraeus, W.E., (to be published): Summer Course on: Diffusion in condensed matter, Leipzig, 2–13 Sep. 1996Google Scholar
  12. Kutner, R., Knödler, D., Pendzig, P., Przenioslo, R., Dieterich, W. (1994): in: “Diffusion Processes: Experiment, Theory, Simulations” edited by A. Pękalski, Lecture Notes in Physics 438 (Springer, Berlin) p. 197CrossRefGoogle Scholar
  13. Kutner, R. (1996): Physica A 224, 558CrossRefADSGoogle Scholar
  14. Magnasco, M. O. (1993): Phys. Rev. Lett. 71, 1477CrossRefADSGoogle Scholar
  15. Magnasco, M. O. (1994): Phys. Rev. Lett. 72, 2656CrossRefADSGoogle Scholar
  16. Marchesoni, F. (1996): Phys. Rev. Lett. 77, 2364CrossRefADSGoogle Scholar
  17. Millonas, M. M., Chialvo, D. R. (1996): Phys. Rev. Lett. 76, 550CrossRefADSGoogle Scholar
  18. Murthy, K.P.N., Kehr, K.W. (1989): Phys. Rev. A. 40, 2082CrossRefADSGoogle Scholar
  19. Prost, J., Chauwin, J. F., Peliti, L., Ajdari, A. (1994): Phys. Rev. Lett. 72, 2652CrossRefADSGoogle Scholar
  20. Schwoebel, R. L., Shipsey, E. J. (1966): J. Appl. Phys. 37, 3682CrossRefADSGoogle Scholar
  21. Schwoebel, R. L. (1969): J. Appl. Phys. 40, 614CrossRefADSGoogle Scholar
  22. Stark, G. (1973): Biochimica and Biophysica Acta 298, 323CrossRefGoogle Scholar
  23. Wichmann, T. (1996): Dr. Rer. Nat. Thesis, Universität zu KölnGoogle Scholar
  24. Zhou, H. X., Chen, Y. D. (1996): Phys. Rev. Lett. 77, 194CrossRefADSGoogle Scholar
  25. Zwolinski, B.J., Eyring, H., Reese, C. E. (1949): J. Phys. Chem. 53, 1426CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • K. W. Kehr
    • 1
  • K. Mussawisade
    • 1
  • T. Wichmann
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations