Advertisement

Causality, particle localization and positivity of the energy

  • G. C. Hegerfeldt
Causality, Semigroups And Resonance States
Part of the Lecture Notes in Physics book series (LNP, volume 504-504)

Abstract

Positivity of the Hamiltonian alone is used to show that particles, if initially localized in a finite region, immediately develop infinite tails.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.N. Fleming, Phys. Rev. 139, B 963 (1965)CrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Schlieder, in: Quanten und Felder, ed. by H.P. Dürr (Vieweg, Braunschweig, 1971), p. 145Google Scholar
  3. 3.
    S.N.M. Ruijsenaars, Ann. Phys. (N.Y.) 137, 33 (1981), has shown for the Newton-Wigner operator that the amount of causality violation tends to zero asymptotically.CrossRefMathSciNetGoogle Scholar
  4. 4.
    A.S. Wightman and S.S. Schweber, Phys. Rev. 98, 812 (1955) and references therein.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. Gerlach, D. Gromes, and J. Petzold, Z. Phys. 202, 1 (1967); 204, 1 (1967); 221, 141 (1916)CrossRefGoogle Scholar
  6. 6.
    G.C. Hegerfeldt, Phys. Rev. D10, 3320 (1974)Google Scholar
  7. 7.
    B. Skagerstam, Int. J. Theor. Phys. 15, 213 (1976)CrossRefMathSciNetGoogle Scholar
  8. 8.
    J.F. Perez and I.F. Wilde, Phys. Rev. D16, 315 (1977)Google Scholar
  9. 9.
    G.C. Hegerfeldt and S.N.M. Ruijsenaars, Phys. Rev. D22, 377 (1980)MathSciNetGoogle Scholar
  10. 10.
    G.C. Hegerfeldt, Phys. Rev. Lett. 54, 2395 (1985)CrossRefMathSciNetGoogle Scholar
  11. 11.
    G.C. Hegerfeldt, Phys. Rev. Lett. 72, 596 (1994)MATHCrossRefGoogle Scholar
  12. 12.
    N. Levinson and R.M. Redheffer, Complex Variables, Holden-Day, San Francisco 1970MATHGoogle Scholar
  13. 13.
    J.B. Garnett, Bounded Analytic Functions, Academic Press, New York 1981; p. 64MATHGoogle Scholar
  14. 14.
    G.C. Hegerfeldt, in Nonlinear, deformed, and irreversible quantum systems, edited by H.-D. Doebner, V.K. Dobrev, and P. Nattermann, World Scientific, Singapore (1995), p. 253Google Scholar
  15. 15.
    D. Buchholz and J. Yngvason, Phys. Rev. Lett. 73, 613 (1994)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. Labarbara and R. Passante, Phys. Lett. 206, 1 (1994)Google Scholar
  17. 17.
    P.W. Milonni, D.F.V. James, and H. Fearn, Phys. Rev. A52, 1525 (1995)Google Scholar
  18. 18.
    G.C. Hegerfeldt, Nuclear Phys. B 6, 231 (1989)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Redhead, Found. Phys. 25, 123 (1995)CrossRefMathSciNetGoogle Scholar
  20. 20.
    B. Thaller and S. Thaller, Il Nuovo Cim. 82A, 222 (1984)MathSciNetGoogle Scholar
  21. 20a.
    B. Thaller, The Dirac Equation, Springer, Berlin 1992Google Scholar
  22. 21.
    H. Bacry, Ann. Inst. H. Poincaré 49, 245 (1988)MathSciNetGoogle Scholar
  23. 22.
    H. Neumannn and R. Werner, Int. J. Theor. Phys. 22, 781 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • G. C. Hegerfeldt
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany

Personalised recommendations