Skip to main content

Quantum theory in the rigged hilbert space — Irreversibility from causality

  • Causality, Semigroups And Resonance States
  • Conference paper
  • First Online:
Irreversibility and Causality Semigroups and Rigged Hilbert Spaces

Part of the book series: Lecture Notes in Physics ((LNP,volume 504-504))

Abstract

After a review of the arrows of time, we describe the possibilities of a time-asymmetry in quantum theory. Whereas Hilbert space quantum mechanics is time-symmetric, the rigged Hilbert space formulation, which arose from Dirac’s braket formalism, allows the choice of asymmetric boundary conditions analogous to the retarded solutions of the Maxwell equations for the radiation arrow of time. This led to irreversibility on the microphysical level as exemplified by decaying states or resonances. Resonances are mathematically represented by Gamow kets, functionals over a space of very well-behaved (Hardy class) vectors, which have been chosen by a boundary condition (outgoing for decaying states). Gamow states have all the properties that one heuristically needs for quasistable states. For them a Golden Rule can be derived from the fundamental probabilities P(t)=Tr(Λ(t)WGamow (t0)) that fulfills the time-asymmetry condition tt 0 which could not be realized in the Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Physical Origins of Time Asymmetry, J.J. Halliwell, et al., eds., (Cambridge University Press, 1994).

    Google Scholar 

  2. P.C.W. Davis, The Physics of Time Asymmetry, (University of California Press, 1977); R. Penrose, Singularities and Time-asymmetry, in General Relativity: Einstein Centenary Survey, S.W. Hawking, et al., eds., (Cambridge University Press, 1979); H.D. Zeh, The Physical Basis of the Direction of Time, (Springer-Verlag, 1989).

    Google Scholar 

  3. R. Peierls, Surprises in Theoretical Physics, Sect. 3.8, (Princeton University Press, Princeton, 1979).

    Google Scholar 

  4. R. Ritz, Physikalische Zeitschrift 9 (1908) 903

    Google Scholar 

  5. A. Einstein, Physikalische Zeitschrift 10 (1909) 185

    Google Scholar 

  6. R. Ritz, Physikalische Zeitschrift 10 (1909) 224

    Google Scholar 

  7. R. Ritz and A. Einstein, Physikalische Zeitschrift 10 (1909) 323.

    Google Scholar 

  8. J.A. Wheeler and R.P. Feynman, Rev. Mod. Phys. 21 (1949) 425.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Süssmann, in Nonlinear, Deformed and Irreversible Quantum Systems, H.D. Doebner, et al., eds., (World Scientific Publ., 1995), p. 98. See also F. Hoyle and J.V. Narlikar, Proc. Roy. Soc. A 277 (1964) 1, and J.E. Hogarth, Proc. Roy. Soc. A 267 (1962) 365, who discuss these questions within the framework of ref. [5].

    Google Scholar 

  10. G. Ludwig, Foundations of Quantum Mechanics, Volume I, (Springer-Verlag, Berlin, 1983) and Volume II, (1985)

    Google Scholar 

  11. An Axiomatic Basis of Quantum Mechanics, Volume I, (Springer-Verlag, Berlin, 1983) and Volume II, (1987)

    Google Scholar 

  12. K. Kraus, State, Effects and Operations, Springer Lecture Notes in Physics 190, (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  13. M. Gell-Mann and J.B. Hartle, in Complexity, Entropy and the Physics of Information, SFI Studies in Science and Complexity Vol. VIII, W. Zurek, ed., (1990)

    Google Scholar 

  14. M. Gell-Mann and J.B. Hartle in ref. [1], p. 311

    Google Scholar 

  15. R.B. Griffiths, J. Stat. Phys., 36 (1984) 219

    Article  MATH  Google Scholar 

  16. R.B. Griffiths in Symposium on the Foundation of Modern Physics 1994, K.V. Laurikainen, et al., eds., (Editions Frontières, 1984), p. 85.

    Google Scholar 

  17. I. Prigogine, Non-Equilibrium Statistical Mechanics (Wiley, New York, 1962)

    MATH  Google Scholar 

  18. E.B. Davis, Quantum Theory of Open Systems, (Academic Press, London, 1976) where detailed references to the original papers can be found.

    Google Scholar 

  19. K. Kraus, Ann. Phys. 64 (1971) 311

    Article  MathSciNet  Google Scholar 

  20. A. Kossakowski, Rep. Math. Phys. 3 (1972) 247

    Article  MathSciNet  Google Scholar 

  21. G. Lindblad, Commun. Math. Phys. 40 (1975) 147

    Article  MATH  MathSciNet  Google Scholar 

  22. 48 (1976) 119

    Google Scholar 

  23. V. Gorini, A. Kossakowski and E.C.G. Sudarshan, J. Math. Phys. 17 (1976) 821, A. Kossakowski, On Dynamical Semigroups and Open Systems, this volume and references thereof.

    Article  MathSciNet  Google Scholar 

  24. A special case of this irreversible time evolution is obtained if one chooses for the reservoir R the measuring apparatus. It has been shown that the collapse axiom (2) together with the Schrödinger equation (1c) leads to semigroup evolutions (10) generated by a Liouvillian L

    Google Scholar 

  25. G.C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D 34 (1986) 470

    Article  MathSciNet  Google Scholar 

  26. I. Antoniou and S. Tasaki, Int. J. Quant. Chem. 46 (1993) 425.

    Article  Google Scholar 

  27. P. Huet and M.E. Peskin, Nucl. Phys. B 434 (1995) 3

    Article  Google Scholar 

  28. J. Ellis, J.S. Hagelin, D.V. Nanopoulos and M. Srendicki, Nucl. Phys. B 241 (1984) 381

    Article  Google Scholar 

  29. J. Ellis, N.E. Mavromatos and D.V. Nanopolous, Phys. Lett. B 293 (1992) 142

    Article  Google Scholar 

  30. CERN-TH-6755/92 (1992)

    Google Scholar 

  31. Fabio Benatti, Complete Positivity and Neutral Kaon Decay, this volume.

    Google Scholar 

  32. C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics: Volume II (Wiley, New York, 1977), p. 1345.

    Google Scholar 

  33. A. Bohm, S. Maxson, Mark Loewe and M. Gadella, Physica A 236 (1997) 485.

    Article  Google Scholar 

  34. P.A.M. Dirac, The Principles of Quantum Mechanics, (Clarendon Press, Oxford, 1930).

    MATH  Google Scholar 

  35. N. Bourbaki, Élements de Mathématique, (Hermann, Paris, 1953).

    Google Scholar 

  36. L. Schwartz, Théorie des Distributions, (Hermann, Paris, 1950).

    MATH  Google Scholar 

  37. I.M. Gel'fand and N. Ya. Vilenkin, Generalized Functions, Volume 4, (Moscow, 1961) (English trans. Academic Press, New York, 1964)

    Google Scholar 

  38. K. Maurin, Generalized Eigenfunction Expansions and Unitary Representations of Topological Groups. (Polish Scientific Publishers, Warzawa, 1968).

    Google Scholar 

  39. H. Weyl, Gruppentheorie und Quantenmechanik, (S. Hirzel, Leipzig, 1928).

    MATH  Google Scholar 

  40. J. von Neumann, Mathematische Grundlagen der Quantentheorie, (Springer, Berlin, 1931) (English translation by R.T. Beyer) (Princeton University Press, Princeton, 1955).

    Google Scholar 

  41. K. Maurin, Analysis, Part II, (Polish Scientific, Warsaw, 1980), Chap. XIII

    MATH  Google Scholar 

  42. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, (Academic Press, San Diego, 1980).

    Google Scholar 

  43. W.H. Zurek, Phys. Rev. D 26 (1982) 1862

    Article  MathSciNet  Google Scholar 

  44. W.H. Zurek and J.P. Paz, in: Proc. Symp. on the Foundations of Modern Physics, Cologne, June 1, 1993, Eds. P. Busch and P. Mittelstaedt, (World Scientific, Singapore, 1993), p. 458.

    Google Scholar 

  45. N. van Kampen, Physica A 153 (1988) 97

    Article  MathSciNet  Google Scholar 

  46. R. Omnès, Reviews of Modern Physics 64 (1992) 339.

    Article  MathSciNet  Google Scholar 

  47. A. Bohm, Quantum Mechanics, 1st Ed. (Springer, New York, 1979)

    MATH  Google Scholar 

  48. 3rd Ed. (1993).

    Google Scholar 

  49. E. Roberts, J. Math. Phys. 7 (1966) 1097

    Article  Google Scholar 

  50. A. Bohm, Boulder Lectures in Theoretical Physics 1966, Vol. 9A, (Gordon and Breach, New York, 1967)

    Google Scholar 

  51. J.P. Antoine, J. Math. Phys. 10 (1969) 53

    Article  MATH  MathSciNet  Google Scholar 

  52. 10 (1969) 2276; see also O. Melsheimer, J. Math. Phys., 15 (1974) 902; 917.

    Google Scholar 

  53. A. Bohm and M. Gadella. Dirac Kets, Gamow Vectors and Gel'fand Triplets, Lecture Notes in Physics, Volume 348, (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  54. L.A. Khalfin, JETP Lett. 15 (1972) 388; see also L. A. Khalfin, this volume.

    Google Scholar 

  55. L. Fonda, G.C. Ghirardi and A. Rimini, Repts. on Prog. in Phys., 41 (1978) 587, and references thereof.

    Article  Google Scholar 

  56. G. Gamow, Z. Phys. 51 (1928) 204.

    Article  Google Scholar 

  57. H. Frauenfelder and E. M. Henley, Subatomic Physics (Prentice Hall, Englewood Cliffs, N.J., 1991).

    Google Scholar 

  58. T.D. Lee, R. Oehme, and C.N. Yang, Phys. Rev. 106 (1957) 340.

    Article  MATH  MathSciNet  Google Scholar 

  59. Particle Data Group, Review of Partical Physics, Phys. Rev. D 54 (1996) 1.

    Google Scholar 

  60. G.C. Hegerfeldt, Phys. Rev. Lett. 72 (1994) 596.

    Article  MATH  Google Scholar 

  61. D. Buchholz and J. Yugvason, Phys. Rev. Lett. 73 (1994) 613

    Article  MATH  MathSciNet  Google Scholar 

  62. P.W. Milonni, D.F.V. James and H. Fearn, Phys. Rev. A 52 (1995) 1525.

    Article  Google Scholar 

  63. R. Peierls, More Surprises in Theoretical Physics, (Princeton University Press, 1992). Gamow's complex energy state have been defined as eigenstates of the Schrödinger equation with purely out-going boundary conditions in the following: P.L. Kapur and R. Peierls, Proc. Roy. Soc. A166 (1938) 277

    Google Scholar 

  64. R. Peierls, Proceedings of the 1954 Glasgow Conference on Nuclear and Meson Physics, E.M. Bellamy, et al., editors, (Pergamon Press, New York, 1955)

    Google Scholar 

  65. G. Garcia-Calderon and R. Peierls, Nuclear Physics A 265 (1976) 443

    Article  Google Scholar 

  66. E. Hernandez and A. Mondragon, Phys. Rev. C 29 (1984) 722

    Article  Google Scholar 

  67. A. Mondragon and E. Hernandez, Annual der Physik 48 (1991) 503

    MathSciNet  Google Scholar 

  68. G. Garcia-Calderon, Symmetries in Physics (Moshinsky Symposium), Eds. A. Frank and K.B. Wolf, (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  69. T.D. Lee, Particle Physics and Introduction to Field Theory, Chapter 13, (Harwood Academic, New York, 1981). In this reference the quantum mechanical time reversed state is called complicated and improbable.

    Google Scholar 

  70. A. Bohm, J. Math. Phys. 22 (1981) 2813

    Article  MathSciNet  Google Scholar 

  71. Lett. Math. Phys. 3 (1978) 455 (1978).

    Google Scholar 

  72. I. Prigogine, From Being to Becoming, (Freeman, New York, 1980)

    Google Scholar 

  73. G. Nicholis and I. Prigogine, Exploring Complexity, (Freeman, New York, 1988)

    Google Scholar 

  74. I. Prigogine, Phys. Rep. 219 (1992) 93

    Article  MathSciNet  Google Scholar 

  75. I. Antoniou, Nature 338 (1989) 210

    Article  Google Scholar 

  76. T. Pertosky, I. Prigogine and S. Tasaki, Physica A 173 (1991) 175

    Article  MathSciNet  Google Scholar 

  77. T. Pertosky and I. Prigogine, Physica A 147 (1988) 439

    Article  MathSciNet  Google Scholar 

  78. T. Pertosky and I. Prigogine, Physica A 175 (1991) 146

    Article  MathSciNet  Google Scholar 

  79. M. de Haan, C. George, and F. Mayné, Physica A 92 (1978) 584.

    Article  MathSciNet  Google Scholar 

  80. I. Antoniou, Proc. 2nd Internat. Wigner Symposium, Gosla 1991, Eds. H.D. Doebner, et al., (World Scientific, Singapore, 1992). I. Antoniou and I. Prigogine, Physica Ia, 192 (1993) 443. I antoniou and S. Tasaki, Intern. Journ. Quantum Chemistry 46 (1993) 425.

    Google Scholar 

  81. K. Napiorkowski, Bulletin of the Polish Academy of Sciences 22 (1974) 1215

    MATH  MathSciNet  Google Scholar 

  82. 23 (1975) 251

    Google Scholar 

  83. Not much is gained with this change (except that Dirac's bra-ket formalism can be made rigorous).

    Google Scholar 

  84. E.P. Wigner, Symmetries and Reflections, (Indiana University Press, Bloomington, 1967), page 38.

    Google Scholar 

  85. P.L. Duren, H p Spaces, (Academic Press, New York, 1970)

    MATH  Google Scholar 

  86. K. Hoffman, Banach Space of Analytic Functions, (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962; Dover Publications, Mineola, NY, 1988).

    Google Scholar 

  87. M. Gadella, J. Math. Phys. 24 (1983) 1462.

    Article  MATH  MathSciNet  Google Scholar 

  88. A. Bohm, Proceedings, Group Theoretical Methods in Physics, Springer Lecture Notes in Physics, Vol. 94 (Springer, Berlin, 1978) 245; and also [7], 1st Ed., Chap. XXI. H. Baumgartel mentioned the Hardy class functions around 1977 in a private communication.

    Google Scholar 

  89. A. Bohm, I. Antoniou, P. Kielanowski, Phys. Lett. A189 (1994) 442

    MathSciNet  Google Scholar 

  90. A. Bohm, I. Antoniou, P. Kielanowski, J. Math. Phys. 36 (1995) 2593.

    Article  MATH  MathSciNet  Google Scholar 

  91. S. Weinberg, The Quantum Theory of Fields, Vol. 1, Chapter 2, Appendix C, (Cambridge University Press, Cambridge, 1995); also in [7], chapter XIX.

    Google Scholar 

  92. E.P. Wigner, Group Theoretical Concepts and Methods in Elementary Particle Physics, Ed. F. Gürsey (Gordon and Breach, New York, 1994), p. 37.

    Google Scholar 

  93. A. Bohm, Phys. Rev. A 51 (1995) 1978

    MathSciNet  Google Scholar 

  94. A. Bohm and Sujeewa Wickramasekara, Found. of Phys. 27 (1997) 969.

    Article  MathSciNet  Google Scholar 

  95. I. Antoniou, Z. Suchanecki, and S. Tasaki, to appear in Generalized Functions, Operator Theory and Dynamical Systems, eds. I. Antoniou and G. Lumer, (Addison Wesley Longman, London, 1998).

    Google Scholar 

  96. I. Antoniou, L. Dmetrieva, Yu. Kuperin and Yu. Melnikov, Comp. Math. Appl., 34 (1997) 399; see also I. Antoniou and Yu. Melnikov, Quantum Scattering Resonances: Poles of a continued S-matrix and Poles of an extended Resolvant, this volume.

    Article  MATH  Google Scholar 

  97. I. Antoniou and M. Gadella, preprint (Intern. Solvay Institute, Brussels, 1995). Results of this preprint were published in: A. Bohm et al., Rep. Math. Phys. 36 (1995) 245.

    Google Scholar 

  98. A. Bohm, M. Loewe, S. Maxson, P. Patuleanu, C. Püntmann, and M. Gadella, on WWW at http://www.ph.utexas.edu/~bohmwww, JMP (1997) to be published.

    Google Scholar 

  99. M.L. Goldberger and K.M. Watson, Phys. Rev. B 136 (1964) 1472

    Article  MathSciNet  Google Scholar 

  100. M.L. Goldberger and K.M. Watson, Collision Theory, (Wiley, New York, 1964)

    MATH  Google Scholar 

  101. R.G. Newton, Scattering Theory of Waves and Particles, 2nd ed. (Springer-Verlag, 1982).

    Google Scholar 

  102. C. van Winter, Trans. Am. Math. Soc. 162 (1972) 103

    Article  MATH  Google Scholar 

  103. J. Math. Anal. and Appl. 47 (1974) 633.

    Google Scholar 

  104. E. Fermi, Nuclear Physics, (University of Chicago Press, 1950).

    Google Scholar 

  105. An exponential law for transition probabilities in atoms was first obtained by V.E. Weisskopf and E.P. Wigner, Zeitschr. f. Physik 63 (1930) 54

    Article  Google Scholar 

  106. 65 (1930) 18, in the Weisskopf-Wigner approximation, cf. also Chap. 8 of the first reference of [53].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arno Bohm Heinz-Dietrich Doebner Piotr Kielanowski

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Bohm, A., Harshman, N.L. (1998). Quantum theory in the rigged hilbert space — Irreversibility from causality. In: Bohm, A., Doebner, HD., Kielanowski, P. (eds) Irreversibility and Causality Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol 504-504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106783

Download citation

  • DOI: https://doi.org/10.1007/BFb0106783

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64305-0

  • Online ISBN: 978-3-540-69725-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics