Skip to main content

Density polarization functional theory

  • Chapter
  • First Online:
Density Functionals: Theory and Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 500))

  • 241 Accesses

Abstract

At the center of density functional theory (DFT) are the proofs by Hohenberg and Kohn, which show that all properties of quantum many-body systems are functionals of the ground state density, and the Kohn-Sham construction, in which the exchange-correlation energy is a functional only of the density. DFT has been widely assumed to apply directly to the static dielectric properties of insulators. However, in 1995, Godby, Ghosez, and Godby pointed out that the assumptions of HK do not strictly apply to the case of a crystal in a finite electric field, since there is no ground state, and they argued that the description of intrinsic bulk dielectric phenomena in a crystal requires a functional of both the bulk density and the polarization. Here we summarize the status of recent work, especially a detailed exposition given elsewhere by the present author and G. Ortiz. The primary goal is to construct a density-polarization functional theory that will provide a fundamental basis for the theory of dielectrics, which is formulated in terms of polarization and electric fields. The consequences of the ideas presented here are: 1) it is essential to use polarization in order to describe the long wavelength limit; 2) physically meaningful changes in polarization can be derived directly from the wavefunction; and 3) DFT must be generalized to a density-polarization functional theory in order to fully describe the dielectric behavior of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, England, 1960).

    MATH  Google Scholar 

  2. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

    Google Scholar 

  3. N. Ashcroft and N. Mermin, Solid State Physics (W.B. Saunders Company, New York, 1976).

    Google Scholar 

  4. C. Kittel, Introduction to Solid State Physics (John Wiley and Sons, New York, 1996).

    Google Scholar 

  5. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Google Scholar 

  6. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  7. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).

    Google Scholar 

  8. R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-body Problem (Springer, Berlin, 1990).

    MATH  Google Scholar 

  9. G. Ortiz and R. M. Martin, Phys. Rev. B 49, 14202 (1994).

    Article  ADS  Google Scholar 

  10. R. M. Martin and G. Ortiz, Solid State Commun. 102, 121 (1997).

    Article  ADS  Google Scholar 

  11. R. M. Martin and G. Ortiz, Phys. Rev. Lett. 78, 2028 (1997).

    Article  ADS  Google Scholar 

  12. R. M. Martin and G. Ortiz, accepted in Phys. Rev. B (1997).

    Google Scholar 

  13. X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett. 74, 4035 (1995).

    Article  ADS  Google Scholar 

  14. C. Zener, Proc. Roy. Soc. (London) 145, 523 (1934).

    Article  MATH  ADS  Google Scholar 

  15. G. Wannier, Rev. Mod. Phys. 34, 645 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Avron and J. Zak, Phys. Rev. B 9, 658 (1974).

    Article  ADS  Google Scholar 

  17. G. Nenciu, Rev. Mod. Phys. 63, 91 (1991).

    Article  ADS  Google Scholar 

  18. R. Landauer, J. Chem. Phys. 32, 1784 (1960).

    Article  ADS  Google Scholar 

  19. J. F. Woo and R. Landauer, Phys. Rev. B 6, 4976 (1972).

    ADS  Google Scholar 

  20. R. M. Martin, Phys. Rev. B 9, 1998 (1974).

    Article  ADS  Google Scholar 

  21. C. Kallin and B. I. Halperin, Phys. Rev. B 29, 2175 (1984).

    Article  ADS  Google Scholar 

  22. A. K. Tagantsev, Phase Transitions 35, 119 (1991).

    Article  Google Scholar 

  23. A. K. Tagantsev, Phys. Rev. Lett. 69, 389 (1992).

    Article  ADS  Google Scholar 

  24. R. Resta, Rev. Mod. Phys. 66, 899 (1994).

    Article  ADS  Google Scholar 

  25. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Article  ADS  Google Scholar 

  26. G. Ortiz, P. Ordejón, R. M. Martin, and G. Chiappe, Phys. Rev. B — in press (1996).

    Google Scholar 

  27. I. I. Mazin and R. E. Cohen, Ferroelectrics 194, 263 (1997).

    Article  Google Scholar 

  28. W. G. Aulbur, L. Jonsson, and J. W. Wilkins, Phys. Rev. B 54, 8540 (1996).

    Article  ADS  Google Scholar 

  29. R. Resta, Phys. Rev. Lett. 77, 2265 (1996).

    Article  ADS  Google Scholar 

  30. X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett. 78, 2029 (1997).

    Article  ADS  Google Scholar 

  31. X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett. 78, 294 (1997).

    Article  ADS  Google Scholar 

  32. R. Resta, Phys. Rev. Lett. 78, 2030 (1997).

    Article  ADS  Google Scholar 

  33. V. Ambegaokar and W. Kohn, Phys. Rev. 117, 423 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. J. Ihm, A. Zunger, and M. L. Cohen, J. Chem. Phys. 12, 4409 (1979).

    Google Scholar 

  35. C. Nash and S. Sen, Topology and Geometry for Physicists (Academic Press, London, 1983).

    MATH  Google Scholar 

  36. M. V. Berry, Proc. Roy. Soc. London A 392, 45 (1984).

    ADS  MathSciNet  Google Scholar 

  37. D. J. Thouless, Phys. Rev. B 27, 6083 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  38. Q. Niu and D. J. Thouless, J. Phys. A 17, 2453 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. G. Blount, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1962), p. 305.

    Google Scholar 

  40. R. W. Nunes and D. Vanderbilt, Phys. Rev. Lett. 73, 712 (1994).

    Article  ADS  Google Scholar 

  41. F. Mauri, G. Galli, and R. Car, Phys. Rev. B 47, 9973 (1993).

    Article  ADS  Google Scholar 

  42. P. Ordejón, D. A. Drabold, M. P. Grumbach, and R. M. Martin, Phys. Rev. B 48, 14646 (1993).

    Article  ADS  Google Scholar 

  43. W. Kohn, Phys. Rev. 133, A171 (1964).

    Google Scholar 

  44. Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. H. March (Plenum, New York, 1983).

    Google Scholar 

  45. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  46. M. Levy, Proc. Nat. Acad. Sci. USA 76, 6062 (1979).

    Article  ADS  Google Scholar 

  47. M. Levy and J. P. Perdew, in Density Functional Methods in Physics, edited by R. M. Dreizler and J. da Providencia (Plenum, New York, 1985), p. 11.

    Google Scholar 

  48. J. Harris and R. O. Jones, J. Phys. F 4, 1170 (1974).

    Article  ADS  Google Scholar 

  49. D. C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425 (1975).

    Article  ADS  Google Scholar 

  50. O. Gunnarsson and B. I. Lundqvist, Phys Rev. B 13, 4274 (1976).

    Article  ADS  Google Scholar 

  51. R. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev. B 1, 910 (1970).

    Article  ADS  Google Scholar 

  52. J. P. Perdew and S. Kurth, this volume.

    Google Scholar 

  53. G. Vignale and M. Rasolt, Phys. Rev. B 37, 10685 (1988).

    Article  ADS  Google Scholar 

  54. K. Burke and E. K. U. Gross, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Daniel Joubert

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martin, R.M. (1998). Density polarization functional theory. In: Joubert, D. (eds) Density Functionals: Theory and Applications. Lecture Notes in Physics, vol 500. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106734

Download citation

  • DOI: https://doi.org/10.1007/BFb0106734

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63937-4

  • Online ISBN: 978-3-540-69673-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics