Advertisement

Mouvements browniens et applications harmoniques

  • Michel Emery
  • Arkadi Nemirovski
  • Dan Voiculescu
Martingales Continues Dans Les Varietes Differentiables
Part of the Lecture Notes in Mathematics book series (LNM, volume 1738)

Keywords

Riemannian Manifold Stochastic Calculus Martingale Locale Connexion Canonique Application Harmoniques 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Réf'erences

  1. [1]
    D. Applebaum & S. Cohen. Stochastic parallel transport along Lévy flows of diffeomorphisms. J. Math. Anal. Appl. 207, 496–505, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Arnaudon. Connexions et martingales dans les groupes de Lie. Sém. de Prob. XXVI, LNM 1526, Springer, 1992.Google Scholar
  3. [3]
    M. Arnaudon. Caractéristiques locales des semi-martingales et changements de probabilités. Ann. Inst. Henri Poincaré 29, 251–267, 1993.MathSciNetGoogle Scholar
  4. [4]
    M. Arnaudon. Semi-martingales dans les espaces homogènes. Ann. Inst. Henri Poincaré 29, 269–288, 1993.MathSciNetzbMATHGoogle Scholar
  5. [5]
    M. Arnaudon. Dédoublement des variétés à bord et des semi-martingales. Stochastics and Stochastics Reports 44, 43–63, 1993.MathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Arnaudon. Propriétés asymptotiques des semi-martingales à valeurs dans les variétés à bord continu. Sém. de Prob. XXVII, LNM 1557, Springer, 1993.Google Scholar
  7. [7]
    M. Arnaudon. Espérances conditionnelles et l-martingales dans les variétés. Sém. de Prob. XXVIII, LNM 1583, Springer, 1994.Google Scholar
  8. [8]
    M. Arnaudon. Barycentres convexes et approximations des martingales continues dans les variétés. Sém. de Prob. XXIX, LNM 1613, Springer, 1995.Google Scholar
  9. [9]
    M. Arnaudon. Differentiable and analytic families of continuous martingales in manifolds with connection. Probability Theory and Related Fields 108, 219–257, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Arnaudon, X.-M. Li & A. Thalmaier. Manifold-valued martingales, change of probabilities, and smoothness of finely harmonic maps. Prépublication.Google Scholar
  11. [11]
    M. Arnaudon & A. Thalmaier. Stability of stochastic differential equations in manifolds. Sém. de Prob. XXXII, LNM 1686, Springer, 1998.Google Scholar
  12. [12]
    M. Arnaudon & A. Thalmaier. Complete lifts of connections and stochastic Jacobi fields. J. Math. Pures et Appliquées 77, 283–315, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Belopolskaya & Y. Dalecky. Stochastic Equations and Differential Geometry. Kluwer Academic Publisher, 1990.Google Scholar
  14. [14]
    M. Berger et B. Gostiaux. Géométrie différentielle. Armand Colin, 1972.Google Scholar
  15. [15]
    J.-M. Bismut. Mécanique aléatoire. LNM 866, Springer, 1981.Google Scholar
  16. [16]
    H. Cartan. Calcul différentiel. Hermann. 1967.Google Scholar
  17. [17]
    P. J. Catuogno. Second order connections and stochastic calculus. Prépublication, Instituto de Matemática, Universidade Estadual de Campinas, Brésil.Google Scholar
  18. [18]
    S. Cohen. Some Markov properties of stochastic differential stochastic equations with jumps. Sém. de Prob. XXIX, LNM 1613, Springer, 1995.Google Scholar
  19. [19]
    S. Cohen. Géométrie différentielle stochastique avec sauts. I. Stochastics and Stochastics Reports 56, 179–203, 1996.MathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Cohen. Géométrie différentielle stochastique avec sauts. II. Discrétisation et applications des EDS avec sauts. Stochastics and Stochastics Reports 56, 205–225, 1996.MathSciNetCrossRefGoogle Scholar
  21. [21]
    J. M. Corcuera & W.S. Kendall. Riemannian barycentres and geodesic convexity. Preprint, Warwick University, 1998.Google Scholar
  22. [22]
    M. Cranston, W.S. Kendall & Y. Kifer. Gromov's hyperbolicity and Picard's little theorem for harmonic maps. Stochastic Analysis and Applications. Proceedings of the Fifth Gregynog Symposium. World Scientific, 1996.Google Scholar
  23. [23]
    R.W.R. Darling. Martingales on Manifolds and Geometric Itô Calculus. Ph. D. Thesis, University of Warwick, 1982.Google Scholar
  24. [24]
    R.W.R. Darling. Martingales in manifolds — Definition, examples and behaviour under maps. Sém. de Prob. XVI bis, LNM 921, Springer, 1982.Google Scholar
  25. [25]
    R.W.R. Darling. A martingale on the imbedded torus. Bull. London Math. Soc. 15, 221–225, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    R.W.R. Darling. Convergence of martingales on a Riemannian manifold. Publ. R.I.M.S. Kyoto University 19, 753–763, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R.W.R. Darling. Approximating Itô integrals of differential forms and geodesic deviation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 65, 563–572, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R.W.R. Darling. On the convergence of Gangolli processes to Brownian motion on a manifold. Stochastics 12, 277–301, 1984. Correction, Stochastics 15, 247, 1985.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    R.W.R. Darling. Convergence of martingales on manifolds of negative curvature. Ann. Inst. Henri Poincaré 21, 157–175, 1985.MathSciNetzbMATHGoogle Scholar
  30. [30]
    R.W.R. Darling. Exit probability estimates for martingales in geodesic balls. Probability Theory and Related Fields 93, 137–152, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    R.W.R. Darling. Differential Forms and Connections. Cambridge University Press, 1994.Google Scholar
  32. [32]
    R.W.R. Darling. Constructing gamma-martingales with prescribed limit, using backward SDE. Ann. Prob. 23, 1234–1261, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    R.W.R. Darling. Martingales on noncompact manifolds: maximal inequalities and prescribed limits. Ann. Inst. Henri Poincaré 32, 1–24, 1996.MathSciNetzbMATHGoogle Scholar
  34. [34]
    R.W.R. Darling. Intrinsic location parameter of a diffusion process. Preprint, Berkeley, 1997.Google Scholar
  35. [35]
    C. Dellacherie, B. Maisonneuve & P.A. Meyer. Probabilités et Potentiel. Volume 5. Hermann, 1992.Google Scholar
  36. [36]
    C. Dellacherie & P.A. Meyer. Probabilités et Potentiel. (4 volumes.) Hermann, 1975, 1980, 1983 et 1987.Google Scholar
  37. [37]
    R.M. Dudley. Distances of probability measures and random variables. Ann. Math. Statist. 39, 1563–1572, 1968.MathSciNetzbMATHGoogle Scholar
  38. [38]
    T.E. Duncan. Stochastic integrals in Riemannian manifolds. J. Multivariate Anal. 6, 397–413, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    T.E. Duncan. Some geometric methods for stochastic integration in manifolds. Geometry and Identification 63–72, Lie Groups: Hist., Frontiers and Appl. Ser B, 1, Math. Sci. Press, Brookline, 1983.Google Scholar
  40. [40]
    K.D. Elworthy. Geometric aspects of diffusions on manifolds. École d'Été de Probabilités de Saint-Flour XV–XVII, 1985–87, LNM 1362, Springer, 1988.Google Scholar
  41. [41]
    K.D. Elworthy. Stochastic Differential Equations on Manifolds. L. M. S. Lecture Notes Series 70, Cambridge University Press, 1982.Google Scholar
  42. [42]
    M. Émery. En marge de l'exposé de Meyer: “Géométrie différentielle stochastique”. Sém. de Prob. XVI bis, LNM 921, Springer, 1982.Google Scholar
  43. [43]
    M. Émery. Convergence des martingales dans les variétés. Colloque en l'honneur de Laurent Schwartz, Volume 2, Astérisque 132, Société Mathématique de France, 1985.Google Scholar
  44. [44]
    M. Émery. En cherchant une caractérisation variationnelle des martingales. Sém. de Prob. XXII, LNM 132, Springer, 1988.Google Scholar
  45. [45]
    M. Émery. Stochastic Calculus in Manifolds. With an appendix by P. A. Meyer. Universitext, Springer, 1989.Google Scholar
  46. [46]
    M. Émery. On two transfer principles in stochastic differential geometry. Sém. de Prob. XXIV, LNM 1426, Springer, 1990. (Corrigendum dans le Sém. de Prob. XXVI, LNM 1526, Springer, 1992.)Google Scholar
  47. [47]
    M. Émery & G. Mokobodzki. Sur le barycentre d'une probabilité dans une variété. Sém. de Prob. XXV, LNM 1485, Springer, 1991. (Addendum dans le Sém. de Prob. XXVI, LNM 1526, Springer, 1992.)Google Scholar
  48. [48]
    M. Émery & W.A. Zheng. Fonctions convexes et semimartingales dans une variété. Sém. de Prob. XVIII, LNM 1059, Springer, 1984.Google Scholar
  49. [49]
    A. Estrade. Calcul stochastique discontinu sur les groupes de Lie. Thèse de Doctorat, Université d'Orléans, 1990.Google Scholar
  50. [50]
    A. Estrade. Exponentielle stochastique et intégrale stochastique discontinues. Ann. Inst. Henri Poincaré 28, 107–129, 1992.MathSciNetzbMATHGoogle Scholar
  51. [51]
    R.E. Greene & H. Wu. On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana University Math. J. 22, 641–653, 1973.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    A. Grorud & M. Pontier. Calcul anticipatif d'ordre deux. Stochastics and Stochastics Reports 42, 1–23, 1993.MathSciNetCrossRefGoogle Scholar
  53. [53]
    A. Grorud & M. Pontier. Calcul stochastique d'ordre deux et équation différentielle anticipative sur une variété. Japan J. Math. 21, 441–470, 1995.MathSciNetzbMATHGoogle Scholar
  54. [54]
    A. Grorud & M. Pontier. Équation différentielle anticipative sur une variété et approximations. Mathematics and Computers in Simulation 38, 51–61, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    W. Hackenbroch & A. Thalmaier. Stochastische Analysis. Eine Einführung in die Theorie der stetigen Semimartingale. Teubner, 1994.Google Scholar
  56. [56]
    M. Hakim-Dowek & D. Lépingle. L'exponentielle stochastique des groupes de Lie. Sém. de Prob. XX, LNM 1204, Springer, 1986.Google Scholar
  57. [57]
    S.W. He, J.A. Yan & W.A. Zheng. Sur la convergence des semimartingales continues dans ℝn et des martingales dans les variétés. Sém. de Prob. XVII, LNM 986, Springer, 1983.Google Scholar
  58. [58]
    S.W. He & W.A. Zheng. Remarques sur la convergence des martingales dans les variétés. Sém. de Prob. XVIII, LNM 1059, Springer, 1984.Google Scholar
  59. [59]
    H. Huang & W.S. Kendall. Correction note to “Martingales on manifolds and harmonic maps”. Stochastics and Stochastics Reports 37, 253–257, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    N. Ikeda & S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North-Holland, 1981.Google Scholar
  61. [61]
    W.S. Kendall. Stochastic differential geometry, a coupling property, and harmonic maps. J. London Math. Soc. 33, 554–566, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    W.S. Kendall. Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19, 111–129, 1986MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    W.S. Kendall. Stochastic differential geometry. Proceedings of the First World Congress of the Bernoulli Society, Vol. 1, 515–524, VNU Sci. Press, Utrecht, 1987.MathSciNetGoogle Scholar
  64. [64]
    W.S. Kendall. Stochastic differential geometry: an introduction. Acta Appl. Math. 9, 29–60, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    W.S. Kendall. Martingales on manifolds and harmonic maps. Geometry of random motion, Contemp. Math. 73, 121–157, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    W.S. Kendall. Probability, convexity, and harmonic maps with small images. I. Uniqueness and fine existence. Proc. London Math. Soc. 61, 371–406, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    W.S. Kendall. Convexity and the hemisphere. J. London Math. Soc. 43, 567–576, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    W.S. Kendall. Convex geometry and nonconfluent Γ-martingales. I. Tightness and strict convexity. Stochastic Analysis, L.M.S. Lecture Notes Series 167, Cambridge University Press, 1991.Google Scholar
  69. [69]
    W.S. Kendall. Convex geometry and nonconfluent Γ-martingales. II. Well-posedness and Γ-martingale convergence. Stochastics and Stochastics Reports 38, 135–147, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    W.S. Kendall. The propeller: a counterexample to a conjectured criterion for the existence of certain harmonic functions. J. London Math. Soc. 46, 364–374, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    W.S. Kendall. Probability, convexity, and harmonic maps with small images. II. Smoothness via probabilistic gradient inequalities. J. Funct. Anal. 126, 228–257, 1994.MathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    W.S. Kendall. The radial part of a Γ-martingale and a non-implosion theorem. Ann. Prob. 23, 479–500, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    S. Kobayashi & K. Nomizu. Foundations of Differential Geometry. (2 volumes.) Wiley, 1963 et 1969.Google Scholar
  74. [74]
    H. Kunita. Lectures on Stochastic Flows and Applications. Springer, 1986.Google Scholar
  75. [75]
    J.T. Lewis. Brownian motion on a submanifold of Euclidean space. Bull. London Math. Soc. 18, 616–620, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    P. Malliavin. Géométrie différentielle intrinsèque. Hermann, 1972.Google Scholar
  77. [77]
    P. A. Meyer. Un cours sur les intégrales stochastiques. Sém. de Prob. X, LNM 511, Springer, 1976.Google Scholar
  78. [78]
    P. A. Meyer. Géométrie stochastique sans larmes. Sém. de Prob. XV, LNM 850, Springer, 1981.Google Scholar
  79. [79]
    P. A. Meyer. A differential geometric formalism for the Itô calculus. Stochastic Integrals, Proceedings of the L.M.S. Durham Symposium, LNM 851, Springer, 1981.Google Scholar
  80. [80]
    P. A. Meyer. Géométrie différentielle stochastique (bis). Sém. de Prob. XVI bis, LNM 921, Springer, 1982.Google Scholar
  81. [81]
    P. A. Meyer. Le théorème de convergence des martingales dans les variétés riemanniennes, d'après R.W. Darling et W.A. Zheng. Sém. de Prob. XVII, LNM 986, Springer, 1983.Google Scholar
  82. [82]
    P. A. Meyer. Géométrie différentielle stochastique. Colloque en l'honneur de Laurent Schwartz, Volume 1, Astérisque 131, Société Mathématique de France, 1985.Google Scholar
  83. [83]
    P. A. Meyer. Qu'est-ce qu'une différentielle d'ordre n? Exposition. Math. 7, 249–264, 1989.MathSciNetzbMATHGoogle Scholar
  84. [84]
    J.R. Norris. A complete differential formalism for stochastic calculus in manifolds. Sém. de Prob. XXVI, LNM 1526, Springer, 1992.Google Scholar
  85. [85]
    X. Pennec. L'incertitude dans les problèmes de reconnaissance et de recalage. Application en imagerie médicale et biologie moléculaire. Thèse, École Polytechnique, 1996.Google Scholar
  86. [86]
    J. Picard. Martingales sur le cercle. Sém. de Prob. XXIII, LNM 1372, Springer, 1989.Google Scholar
  87. [87]
    J. Picard. Martingales on Riemannian manifolds with prescribed limits. J. Funct. Anal. 99, 223–261, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    J. Picard. Calcul stochastique avec sauts sur une variété. Sém. de Prob. XXV, LNM 1485, Springer, 1991.Google Scholar
  89. [89]
    J. Picard. Barycentres et martingales sur une variété. Ann. Inst. Henri Poincaré 30, 647–702, 1994.Google Scholar
  90. [90]
    M. Pontier & A. Estrade. Relèvement horizontal d'une semimartingale càdlàg. Sém. de Prob. XXVI, LNM 1526, Springer, 1992.Google Scholar
  91. [91]
    R. Rebolledo. La méthode des martingales appliquée à la convergence en loi des processus. Mémoire S.M.F. 62, 1979.Google Scholar
  92. [92]
    G. de Rham. Variétés différentiables; formes, courants, formes harmoniques. Hermann, 1960.Google Scholar
  93. [93]
    L.C.G. Rogers & D. Williams. Diffusions, Markov Processes, and Martingales. Volume 2: Itô Calculus. Wiley, 1987.Google Scholar
  94. [94]
    L. Schwartz. Semi-martingales sur des variétés et martingales conformes sur des variétés analytiques complexes. LNM 780, Springer, 1980.Google Scholar
  95. [95]
    L. Schwartz. Géométrie différentielle du 2e ordre, semimartingales et équations différentielles stochastiques sur une variété différentielle. Sém. de Prob. XVI bis, LNM 921, Springer, 1982.Google Scholar
  96. [96]
    L. Schwartz. Semimartingales and their Stochastic Calculus on Manifolds. Presses de l'Université de Montréal, 1984.Google Scholar
  97. [97]
    L. Schwartz. Construction directe d'une diffusion sur une variété. Sém. de Prob. XIX, LNM 1123, Springer, 1985.Google Scholar
  98. [98]
    L. Schwartz. Les gros produits tensoriels en analyse et en probabilités. Aspects of Mathematics and its Applications, Collected Papers in Honour of Leopoldo Nachbin, 689–725, 1986.Google Scholar
  99. [99]
    L. Schwartz. Compléments sur les martingales conformes. Osaka J. Math. 23, 77–116, 1986.MathSciNetzbMATHGoogle Scholar
  100. [100]
    L. Schwartz. Les différentielles de semimartingales vraies, sections de fibrés vectoriels. J. Geom. Phys. 5, 137–148, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  101. [101]
    L. Schwartz. Calcul infinitésimal stochastique. Analyse mathématique et applications. Contributions en l'honneur de Jacques-Louis Lions. Gauthier-Villars, 1988.Google Scholar
  102. [102]
    M. Spivak. A Comprehensive Introduction to Differential Geometry (5 volumes). Second edition. Publish or Perish Inc., 1979.Google Scholar
  103. [103]
    D.W. Stroock & S.R.S. Varadhan. Multidimensional Diffusion Processes. Springer, 1979.Google Scholar
  104. [104]
    A. Thalmaier. Martingales on Riemannian manifolds and the nonlinear heat equation. Stochastic Analysis and Applications. Proceedings of the Fifth Gregynog Symposium. World Scientific, 1996.Google Scholar
  105. [105]
    A. Thalmaier. Brownian motion and the formation of singularities in the heat flow for harmonic maps. Probability Theory and Related Fields 105, 335–367, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  106. [106]
    K. Yano & S. Ishihara. Tangent and Cotangent Bundles. Marcel Dekker Inc., 1973.Google Scholar
  107. [107]
    W.A. Zheng. Sur le théorème de convergence des martingales dans une variété riemannienne. Z. Wahrscheinlichkeitstheorie verw. Gebiete 63, 511–515, 1983.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • Michel Emery
  • Arkadi Nemirovski
  • Dan Voiculescu

There are no affiliations available

Personalised recommendations