Advertisement

Shock-capturing schemes for L.E.S. applications

  • E. Garnier
  • M. Mossi
  • P. Sagaut
  • P. Comte
  • M. Deville
Compressible Flows Communications
Part of the Lecture Notes in Physics book series (LNP, volume 515)

Abstract

Numerical simulations of freely decaying isotropic turbulence were performed at two different Mach numbers (0.2 and 1.0) using known shock-capturing Euler schemes (Jameson, TVD-MUSCL, ENO). The potential of the Monotone Integrated Large-Eddy Simulation (MILES) approach was investigated by carrying out computations without viscous diffusion terms. These schemes are found very dissipative for the small scales. In a LES context, the numerical dissipation is interpreted in terms of subgrid-scale dissipation, yielding ‘equivalent Smagorinsky constant’ larger than the commonly accepted values of the classical Smagorinsky constant.

Key Words

Large-Eddy Simulation Shock-capturing schemes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ghosal, An analysis of numerical errors in large-eddy simulations of turbulence, J. Comput. Phys. 125, 187 (1996).MATHCrossRefMathSciNetADSGoogle Scholar
  2. A. G. Kravchenko and P. Moin, On the effect of numerical errors in large-eddy simulations of turbulent flows, J. Comput. Phys. 131, 310 (1997).MATHCrossRefADSGoogle Scholar
  3. D.H. Porter, A. Pouquet and P.R. Woodward, Kolmogorov-like spectra in decaying three-dimensional supersonic flows, Phys. Fluids 6, (6), 2133 (1994).MATHCrossRefADSGoogle Scholar
  4. J.P. Boris, F.F. Grinstein, E.S. Oran and R.L. Kolbe, New insights into large-eddy simulation, Fluid Dyn. Res. 10, 199 (1992).CrossRefADSGoogle Scholar
  5. C.W. Shu, Numerical experiments on the accuracy of ENO and Modified ENO schemes, J. Scient. Comput. 5, No. 2, 127 (1990).MATHCrossRefGoogle Scholar
  6. X. D. Liu, S. Osher and T. Chan, Weighted Essentially Non-Oscillatory schemes, J. Comput. Phys. 115, 200 (1994).MATHCrossRefADSMathSciNetGoogle Scholar
  7. C.W. Shu and S. Osher, Efficient implementation of Essentially Non-Oscillatory shock-capturing schemes II, J. Comput. Phys. 83, 32 (1989).MATHCrossRefMathSciNetADSGoogle Scholar
  8. H.C. Yee, Construction of explicit and implicit symmetric TVD schemes and their applications, J. Comput. Phys. 68, 151 (1987).MATHCrossRefMathSciNetADSGoogle Scholar
  9. A. Jameson, W. Schmidt and E. Turkel, Numerical simulation of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes, AIAA Paper 81-1259, IAAA 5th Computation Fluid Dynamics Conference (1981).Google Scholar
  10. E. Garnier, M. Mossi, P. Sagaut, P. Comte and M. Deville, On the use of shock-capturing scheme for Large-Eddy Simulation, submitted to J. Comput. Phys. (1998)Google Scholar
  11. J. Smagorinsky, General circulation experiments with the primitive equations. I. — The basic experiment, Month. Weath. Rev. 91, (3), 99 (1963).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • E. Garnier
    • 1
  • M. Mossi
    • 1
  • P. Sagaut
    • 1
  • P. Comte
    • 1
  • M. Deville
    • 1
  1. 1.ONERAChatillon CedexFrance

Personalised recommendations