Skip to main content

Shock waves and coronal mass ejections

  • Large-Scale Disturbances
  • Conference paper
  • First Online:
Coronal Physics from Radio and Space Observations

Part of the book series: Lecture Notes in Physics ((LNP,volume 483))

  • 106 Accesses

Abstract

Shock waves and coronal mass ejections (CMEs) are large scale phenomena of solar activity. They are generated in the solar corona and can enter into the interplanetary space. Both shock waves and CMEs are accompanied by energetic particles (electrons, protons, and heavy ions). The paper summarizes working group discussions on the propagation of CMEs and shock waves in the corona, on the role of CMEs in energy release processes, and on microphysical processes creating enhanced plasma wave turbulence and particle acceleration at shock waves. The ULYSSES, WIND, and SOHO missions together with ground based observations and additional theoretical investigations are an exceptional opportunity to achieve progress in answering the many open questions.

Working Group Report

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akimov V.V. and 6 co-authors (1994): Some evidences of prolonged particle acceleration in the high-energy gamma ray flare of June 15, 1991. In High-Energy Phenomena-A New Era of Spacecraft Measurements, ed. by J.M. Ryan, W.T. Vestrand, AIP Conf. Proc. 294, 106

    Google Scholar 

  • Akimov V.V. and 11 co-authors (1996): Evidence for prolonged acceleration based on a detailed analysis of the long-duration solar gamma ray flare of June 15, 1991. Solar Phys. 166, 107

    Article  ADS  Google Scholar 

  • Alexander D., Slater G.L., Hudson H.S., McAllister A.H., Harvey K.L. (1994): The large scale coronal eruptive event of April 14 1994. In Solar Dynamic Phenomena and Solar Wind Consequences, ESA SP-373, 187

    Google Scholar 

  • Aurass H. (1992): Radio observations of coronal and interplanetary type II bursts. Ann. Geophys. 10, 359

    ADS  Google Scholar 

  • Benz A. O., Thejappa G. (1988): Radio emission of coronal shock waves. A&A 202, 267

    ADS  Google Scholar 

  • Bougeret J.-L. (1985): Observations of shock formation and evolution in the solar atmosphere. In Collisionless Shocks in the Heliosphere: Reviews of Current Research, ed. by B. S. Tsurutani, R. G. Stone (Geophys. Monogr. Ser. Vol. 35, Washington DC), 13

    Google Scholar 

  • Bougeret, J.-L. and 11 co-authors (1995): Waves: The radio and plasma wave investigation on the Wind spacecraft. In The Global Geospace Mission, ed. by C. T. Russell (Kluwer Academic Press, Dordrecht), 231

    Google Scholar 

  • Burkepile J.T., St. Cyr O.C. (1993): A revised and expanded catalogue of mass ejections observed by the Solar Maximum Mission Coronagraph. NCAR Technical Note NCAR/TN-369+STR

    Google Scholar 

  • Cairns I. H. (1986): New waves at multiples of the plasma frequency upstream of the Earth’s bow shock. JGR 91, 2975

    Article  ADS  Google Scholar 

  • Cairns I. H. (1987a): Fundamental plasma emission involving ion sound waves. J. Plasma Phys. 38, 169

    Article  ADS  Google Scholar 

  • Cairns I. H. (1987b): Second harmonic plasma emission involving ion sound waves. J. Plasma Phys. 38, 179

    Article  ADS  Google Scholar 

  • Cairns I. H. (1987c): Third and higher harmonic plasma emission due to Raman scattering. J. Plasma Phys. 38, 199

    Article  ADS  Google Scholar 

  • Cairns I. H., Robinson R. D. (1987): Herringbone bursts associated with type II solar radio emission. Solar Phys. 111, 365

    Article  ADS  Google Scholar 

  • Chertok I.M. (1996): Yohkoh data on CME-flare relationships and post-eruption magnetic reconnection in the corona. In Yohkoh Conference on Magnetic Reconnection in the Solar Atmosphere, ed. by R.D. Bentley, J.T. Mariska, ASP Conf. Series, in press

    Google Scholar 

  • Démoulin P., Vial J.C. (1992): Structural characteristics of eruptive prominences. Solar Phys. 141, 289

    Article  ADS  Google Scholar 

  • Dryer M. (1994): Interplanetary studies: propagation of disturbances between the sun and the magnetosphere. Space Sci. Rev. 67, 363

    Article  ADS  Google Scholar 

  • Dulk G. A., McLean D. J. (1978): Coronal magnetic fields. Solar Phys. 57, 279

    Article  ADS  Google Scholar 

  • Fainberg J., Stone R. G. (1971): Type III solar radio burst storms observed at low frequencies. Solar Phys. 17, 392

    Article  ADS  Google Scholar 

  • Feynman J., Hundhausen A.J. (1994): Coronal mass ejections and major solar flares: the great active Center of March 1989. JGR 99, 8451

    Article  ADS  Google Scholar 

  • Filbert P. C., Kellog P. J. (1979): Electrostatic noise at the plasma frequency beyond the Earth’s bow shock. JGR 84, 1369

    Article  ADS  Google Scholar 

  • Gopalswamy N. and 6 co-authors (1996): Radio and X-ray studies of a CME associated with a very slow prominence eruption. ApJ, submitted

    Google Scholar 

  • Gopalswamy N., Kundu M.R. (1989): A slowly moving plasmoid associated with a filament eruption. Solar Phys. 122, 91

    Article  ADS  Google Scholar 

  • Gopalswamy N., Kundu M. R. (1992): Are coronal shocks piston driven? In Particle Acceleration in Cosmic Plasmas, ed. by G. P. Zank, T. K. Gaisser (American Institute of Physics, New York), 257

    Google Scholar 

  • Gosling J. T., Birn J., Hesse M. (1995): Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events. Geophys. Res. L. 22, 869

    Article  ADS  Google Scholar 

  • Gurnett D. A., Neubauer F. M., Schwenn R. (1979): Plasma wave turbulence associated with an interplanetary shock. JGR 84, 541

    Article  ADS  Google Scholar 

  • Hanaoka Y. and 19 co-authors (1994): Simultaneous observation of a prominence eruption followed by a coronal arcade formation in radio, soft X-rays, and Hα. Publ. Astron. Soc. Japan 46, 205

    ADS  Google Scholar 

  • Harrison R.A., Hildner E., Hundhausen A.J., Sime D.G., Simnett G.M. (1990): The launch of solar coronal mass ejections: results from the coronal mass ejection onset program. JGR 95, 917

    Article  ADS  Google Scholar 

  • Hiei E., Hundhausen A.J., Sime D.G. (1993): Reformation of a coronal helmet streamer by magnetic reconnection after a coronal mass ejection. Geophys. Res. L. 20, 2785

    Article  ADS  Google Scholar 

  • Hildner E. and 20 co-authors (1986): Coronal mass ejections and coronal structures. In Energetic Phenomena on the Sun, ed. by M.R. Kundu, B.E. Woodgate, NASA CP-2439, 6-1

    Google Scholar 

  • Holman G. D., Pesses M. E. (1983): Solar type II radio emission and shock drift acceleration of electrons. ApJ 267, 837

    Article  ADS  Google Scholar 

  • Howard R.A., Sheeley N.R., Koomen M.J., Michels D.J. (1985): Coronal mass ejections: 1979–1981. JGR 90, 8173

    Article  ADS  Google Scholar 

  • Hudson H.S. and 7 co-authors (1994): Non-thermal effects in slow solar flares. In X-Ray Solar Physics from Yohkoh, ed. by. Y. Uchida, T. Watanabe, K. Shibata, H.S. Hudson (Univ. Acad. Press, Tokyo), 143

    Google Scholar 

  • Hudson H.S., Haisch B., Strong K.T. (1995): Comment on “The solar flare myth” by J.T. Gosling. JGR 100, 3473

    Article  ADS  Google Scholar 

  • Hughes W.J., Sibeck D.G. (1987): On the 3-dimensional structure of plasmoids. Geophys. Res. L. 14, 636

    Article  ADS  Google Scholar 

  • Hundhausen A.J. (1987): The origin and propagation of coronal mass ejections. In Solar Wind 6, ed. by V.J. Pizzo, T.E. Holzer, D.G. Sime, NCAR Tech. Note/TN-306+Proc, 181

    Google Scholar 

  • Hundhausen A.J. (1993): Sizes and locations of coronal mass ejections: SMM Observations from 1980 and 1984–1989. JGR 98, 13177

    Article  ADS  Google Scholar 

  • Hundhausen A.J. (1995): Coronal mass ejections: a summary of SMM observations from 1980 and 1984–1989. To be published in The Many Faces of the Sun

    Google Scholar 

  • Kahler S.W., Hundhausen A.J. (1992): The magnetic topology of solar coronal structures following Mass Ejections. JGR 97, 1619

    Article  ADS  Google Scholar 

  • Kahler S.W., Moore R.L., Kane S.R., Zirin H. (1988): Filament eruptions and the impulsive phase of solar flares. ApJ 328, 824

    Article  ADS  Google Scholar 

  • Kanbach G. and 18 co-authors (1993): Detection of a long-duration solar gamma-ray flare on June 11, 1991 with EGRET on Compton-GRO. A&AS 97, 349

    ADS  Google Scholar 

  • Kennel C. F., Edmiston J. P., Hada T. (1985): A quarter century of collisionless shock research. In Collisionless Shocks in the Heliosphere: Reviews of Current Research, ed. by B. T. Tsurutani, R. G. Stone (Geophys. Monogr. Ser. Vol. 35, Washington DC), 1

    Google Scholar 

  • Kennel C. F., Scarf F. L., Coroniti F. V., Smith E.J., Gurnett D.A. (1982): Nonlocal plasma turbulence associated with interplanetary shocks. JGR 87, 17

    Article  ADS  Google Scholar 

  • Klein K.-L., Mouradian Z. (1990): A Moving Radio Source Related to a Prominence Eruption. In Flares 22 Workshop “Dynamics of Solar Flares”, ed. by B. Schmieder, E.R. Priest (Paris Observatory Publication), 185

    Google Scholar 

  • Kopp R.A., Pneuman G.W. (1976): Magnetic Reconnection in the Corona and the Loop Prominence Phenomenon. Solar Phys. 50, 85

    Article  ADS  Google Scholar 

  • Krauss-Varban D. (1989): Fast Fermi and gradient drift acceleration of electrons at nearly perpendicular collisionless shocks. JGR 94, 15,367

    ADS  Google Scholar 

  • Kurokawa H., Hanaoka Y., Shibata K., Uchida Y. (1987): Rotating Eruption of an Untwisting Filament Triggered by the 3B Flare of 25 April, 1984. Solar Phys. 108, 251

    Article  ADS  Google Scholar 

  • Leikov N.G. and 16 co-authors (1993): Spectral characteristics of high-energy gamma ray solar flares. A&AS 97, 345

    ADS  Google Scholar 

  • Lengyel-Frey D. (1992): Location of the radio emitting regions of interplanetary shocks. JGR 97, 1609

    Article  ADS  Google Scholar 

  • Lengyel-Frey, D., Stone, R. G. (1989): Characteristics of interplanetary type II radio emission and the relationship to shock and plasma properties. JGR 94, 159

    Article  ADS  Google Scholar 

  • Leroy M. M., Mangeney A. (1984): A theory of energization of solar wind electrons by the Earth’s bow shock. Ann. Geophys. 2, 449

    ADS  Google Scholar 

  • Lin R. P. and 19 co-authors (1995): A Three-Dimensional Plasma and Energetic Particle Observation for the WIND spacecraft. In The Global Geospace Mission, ed. by C. T. Russell (Kluwer, Dordrecht), 125

    Google Scholar 

  • MacQueen R. M. (1980): Coronal transients: a summary. Phil. Trans. R. Soc. London, Ser. A 297, 605

    Article  ADS  Google Scholar 

  • Mann G. (1995): Theory and observations of coronal shock waves. In Coronal Magnetic Energy Releases, ed. by A. O. Benz, A. Krüger (Springer, Berlin), 183

    Chapter  Google Scholar 

  • Mann G., Claßen H.-T. (1995): Electron acceleration to high energies at quasiparallel shock waves in the solar corona. A&A 304, 576

    ADS  Google Scholar 

  • Mann G., Claßen T., Auraß H. (1994a): Characteristics of coronal shock waves and solar type II radio bursts. A&A 295, 775

    ADS  Google Scholar 

  • Mann G., Lühr H., Baumjohann W. (1994b): Statistical analysis of short large amplitude magnetic structures at a quasi-parallel shock. JGR 99, 13,315

    ADS  Google Scholar 

  • Marsch E. (1990): Kinetic physics of the solar wind plasma. In Physics of the Inner Heliosphere Vol. 2, ed. by R. Schwenn, E. Marsch (Springer, Berlin, Heidelberg, New York), 103

    Google Scholar 

  • McAllister A.H., Dryer M., McIntosh P., Singer H., Weiss L. (1994): A large polar crown CME and a severe geomagnetic storm: April 14–17, 1994. In Solar Dynamic Phenomena and Solar Wind Consequences, ESA SP-373, 315

    Google Scholar 

  • Melrose D. B. (1985): Plasma emission mechanisms. In Solar Radiophysics, ed. by D. J. McLean, N. R. Labrum (Cambridge University Press, Cambridge), 177

    Google Scholar 

  • McLean D.J. (1973): A moving radio burst on the limb of the sun observed at 80 and 160 MHz. Proc. Astron. Soc. Aust. 2, 222

    ADS  Google Scholar 

  • Munro R. H., Sime D. G. (1985): White-light coronal transients observed from Skylab May 1973 to February 1974: a classification by apparent morphology. Solar Phys. 97, 191

    Article  ADS  Google Scholar 

  • Nelson G. S., Melrose D. (1985): Type II bursts. In Solar Radiophysics, ed. by D.J. McLean, N.R. Labrum (Cambridge University Press, Cambridge), 333

    Google Scholar 

  • Paschmann G., Sckopke N., Asbridge J. R., Bame S. J., Gosling J. T. (1980): Energization of solar wind ions by reflection from the Earth’s bow shock. JGR 85, 4689

    Article  ADS  Google Scholar 

  • Priest E.R. (1982): Solar Magnetohydrodynamics (D. Reidel, Dordrecht)

    Google Scholar 

  • Rompolt B. (1990): Small scale structure and dynamics of prominences. Hvar Obs. Bulletin 14(1), 37

    ADS  Google Scholar 

  • Schwartz S. J., Burgess D. (1991): Quasi-parallel shocks: a patchwork of three-dimensional structures. Geophys. Res. L. 18, 373

    Article  ADS  Google Scholar 

  • Schwartz S. J., Burgess D., Wilkenson W. P., Kessel R. L., Dunlop M., Lühr H. (1992): Observations of short large amplitude magnetic structures at a quasiparallel shock. JGR 97, 4209

    Article  ADS  Google Scholar 

  • Schwartz S. J., Thomsen M. F., Gosling J. T. (1983): Ions upstream of the Earth’s bow shock: A theoretical comparison of alternative source populations. JGR 88, 2039

    Article  ADS  Google Scholar 

  • Smerd S.F., Dulk G.A. (1971): 80 MHz radioheliograph evidence on moving type IV bursts and coronal magnetic fields. In Solar Magnetic Fields, IAU Symp. no. 57, ed. by R. Howard (D. Reidel, Dordrecht), 616

    Google Scholar 

  • Smerd S. F., Wild J. P., Sheridan K. V. (1962): On the relative position and origin of harmonics in the spectra of solar radio bursts of spectral types II and III. Aust. J. Phys 15, 180

    ADS  Google Scholar 

  • Sonnerup B. U. Ö. (1969): Acceleration of particles reflected at a shock front. JGR 74, 1301

    Article  ADS  Google Scholar 

  • Stewart R.T. and 6 co-authors (1982): Visible light observations of a dense plasmoid associated with a moving type IV solar radio burst. A&A 116, 217

    ADS  Google Scholar 

  • Stone R. G. and 31 co-authors (1992): The unified radio and plasma wave investigation. A&AS 92, 291

    ADS  Google Scholar 

  • Thejappa G., Wentzel D. G. MacDowall R. J., Stone R. G. (1995): Unusual wave phenomena near interplanetary shocks at high latitudes. Geophys. Res. L. 22, 3421

    Article  ADS  Google Scholar 

  • Treumann R. A. and 12 co-authors (1986): Electron plasma waves in the solar wind: AMPTE/IRM and UKS observations. Adv. Space Res. 6(1), 93

    Article  ADS  Google Scholar 

  • Tsuneta S. (1996): Evidence for reconnection in solar flares from Yohkoh SXT observations. ApJ 456, 840

    Article  ADS  Google Scholar 

  • Wagner W.J., MacQueen R. M. (1983): The excitation of type II radio bursts in the corona. A&A 120, 136

    ADS  Google Scholar 

  • Webb D.F., Cliver E.W. (1995): Evidence for magnetic disconnection of mass ejections in the corona. JGR 100, 5853

    Article  ADS  Google Scholar 

  • Wibberenz G. K. and 6 co-authors (1989): Coronal and interplanetary transport of solar energetic protons and electrons. Solar Phys. 124, 353

    Article  ADS  Google Scholar 

  • Wild J. P., Sheridan K. V., Trent G. H. (1959): The transverse motions of the source of solar radio bursts, In IAU/URSI Symp. Paris Symposium on Radio Astronomy, ed. by R.N. Bracewell (Stanford Univ. Press, Stanford), 176

    Google Scholar 

  • Wu C. S. (1984): A fast Fermi process: energetic electrons accelerated by a nearly perpendicular bow shock. JGR 89, 8857

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Trottet

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Klein, KL., Mann, G. (1997). Shock waves and coronal mass ejections. In: Trottet, G. (eds) Coronal Physics from Radio and Space Observations. Lecture Notes in Physics, vol 483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106456

Download citation

  • DOI: https://doi.org/10.1007/BFb0106456

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62797-5

  • Online ISBN: 978-3-540-68693-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics