On disks and jet(s) in the defunct quasar M 87

  • Max Camenzind
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 530)


M 87 is a prime candidate of an old quasar where the fuelling rate has been reduced drastically to ≅ 10−3 Ed. Under this condition, accretion towards a rapidly rotating black hole occurs in an optically thin fashion. The accretion rate is limited to 10−3 Ed by the jet luminosity. This low-accretion rate is in agreement with the fuelling provided by stellar winds in the central core of M 87. Due to the low angular momentum of the stellar component in this giant elliptical, stellar mass-loss accumulates in a ring-like structure on the parsec-scale which is observed by HST. Accretion towards the central black hole occurs from here over geometrically thin advection dominated flows (ADAFs) that also drag inwards magnetic flux from the parsec-scale.

This magnetic structure builds up a dipolar magnetosphere which immerses the central black hole. Disk plasma is injected into rotating field lines that connect to the horizon. We discuss the energetics and wind properties of the magnetically driven outflows. The observed kinetic luminosity is essentially Poynting-flux transformed into kinetic energy along collimated flux-tubes. The injection conditions near the horizon determine the asymptotic outflow velocities, Lorentz factors of 3 – 5 are quite natural. The resulting collimation radius is in agreement with VLBI data.


Black Hole Accretion Disk Accretion Rate Stellar Wind Radio Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowicz, M.A. et al. (1996), ApJ 471, 762CrossRefADSGoogle Scholar
  2. Beskin, V.S., Istomin, Ya.N., Par'ev, V.I. 1992, Sov. Astron. 36(6), 642ADSGoogle Scholar
  3. Biretta, J., 1998, these proc.Google Scholar
  4. Blandford, R.D. 1994, in Cosmical Magnetism, ed. D. Lynden-Bell, Kluwer (Dordrecht), p. 171Google Scholar
  5. Blandford, R.D., Levinson, A. (1995), ApJ 441, 79CrossRefADSGoogle Scholar
  6. Blandford, R.D., Znajek, R.L. (1977), MNRAS 179, 433ADSGoogle Scholar
  7. Buyn, Y.-I. et al., 1996, AJ 111, 1889CrossRefADSGoogle Scholar
  8. Camenzind, M. 1993, in Lecture Notes in Phys. 421, 109ADSCrossRefGoogle Scholar
  9. Camenzind, M. 1996, in Rev. Mod. Astron. 8, ed. G. Klare, p. 201Google Scholar
  10. Camenzind, M. 1996, in Solar and Astrophysical Magnetohydrodynamic Flows, ed. K. Tsinganos, Kluwer (Dordrecht), p. 699Google Scholar
  11. Camenzind, M., 1997, Les noyaux actifs de galaxie, Lecture Notes in Phys. m46, Springer-Verlag (Heidelberg)Google Scholar
  12. Camenzind, M. 1998a, in Relativistic Astrophysics, eds. H. Riffert, H. Ruder, H.-P. Nollert, F.W. Hehl, Vieweg (Braunschweig), p. 82Google Scholar
  13. Camenzind, M. 1998b, in prep.Google Scholar
  14. Camenzind, M. 1998c, in Astrophysical Jets: Open Problems, eds. S. Massaglia, G. Bodo, Gordon and Breach (Amsterdam), p. 3Google Scholar
  15. Clarke, C.J., 1989, MNRAS 235, 881ADSGoogle Scholar
  16. Crane, P. et al., 1993, AJ 106, 1371CrossRefADSGoogle Scholar
  17. Dopita, M.A., Karathar, A.P., et al. 1997, ApJ 490, 207CrossRefADSGoogle Scholar
  18. Faber, S. et al., 1997, AJ 114, 1771CrossRefADSGoogle Scholar
  19. Fendt, C., 1997, A&A 319, 1025ADSGoogle Scholar
  20. Fendt, C., Camenzind, M., 1996, A&A 313, 591ADSGoogle Scholar
  21. Ford, H.C., Harms, R.J., Tsvetanov, Z.I. et al. 1994, ApJ 435, L27Google Scholar
  22. Harms, R.J. et al., 1994, ApJ 435, L35Google Scholar
  23. Hirotani, K., Okamoto, I. 1997, ApJ, in pressGoogle Scholar
  24. Khanna, R., Camenzind, M. 1992, A&A 263, 401ADSGoogle Scholar
  25. Khanna, R., Camenzind, M. 1996, A&A 307, 665ADSGoogle Scholar
  26. Klein, U., 1999, these proceedingsGoogle Scholar
  27. Kormendy, J., Richstone, D., 1995, ARA&A 33, 581ADSGoogle Scholar
  28. Kudoh, T., Kaburaki, O., 1997, ApJ 460, 199CrossRefADSGoogle Scholar
  29. Lin, D.N.C., Shields, G.A., 1986, ApJ 305, 28CrossRefADSGoogle Scholar
  30. Macchetto, F.D., Marconi, A., Axon, D.J. et al. 1997, ApJ 489, 579CrossRefADSGoogle Scholar
  31. Macdonald, D.A. 1984, MNRAS 211, 313ADSGoogle Scholar
  32. Meisenheimer, K., 1996, in Jets from Stars and Galactic Nuclei, ed. W. Kundt, Lecture Notes in Phys. 471, p.Google Scholar
  33. Narayan, R., Yi, I. 1995, ApJ 444, 231CrossRefADSGoogle Scholar
  34. Narayan, R., Kato, S., Honma, F., 1997, ApJ 476, 49CrossRefADSGoogle Scholar
  35. Nunez, M., 1997, Phys. Rev. Lett. 79, 796CrossRefADSGoogle Scholar
  36. Okamoto, I. 1992, MNRAS 254, 192ADSMathSciNetGoogle Scholar
  37. Peitz, J., Appl, S. 1997, MNRAS 286, 681ADSGoogle Scholar
  38. Reynolds, C.S. et al., 1996, MNRAS 283, 111ADSGoogle Scholar
  39. Siemiginowska, A., Czerny, B., Kostyunin, V., 1996, ApJ 458, 507CrossRefGoogle Scholar
  40. Slee, O.B., Sadler, E.M., Reynolds, J.E., Ekers, R.D. 1994, MNRAS 269, 928ADSGoogle Scholar
  41. Thorne, K.S., Price, R.H., Macdonald, D.A., 1986, Black Hole — The Membrane Paradigm, Yale Univ. Press, New HavenGoogle Scholar
  42. Tsvetanov, Z.I. et al., 1998, ApJ 493, L83Google Scholar
  43. Wrobel, J.M. 1991, AJ 101, 127CrossRefADSGoogle Scholar
  44. Zhao, HongShen 1996, MNRAS 278, 149ADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Max Camenzind
    • 1
  1. 1.Landessternwarte KönigstuhlHeidelbergGermany

Personalised recommendations