Advertisement

Theory of the M 87 jet

  • Geoffrey V. Bicknell
  • Mitchell C. Begelman
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 530)

Abstract

We summarize theoretical ideas on the dynamical properties of the jet in M 87 and its relationship to the inner lobe and adjacent emission line filaments. Shocks in one form or another and the Kelvin Helmholtz instability have long been held to be related to the emission from the M 87 jet and its shape respectively. We give a brief account of recent work which attempts to relate these two pieces of physics. We note that it is important to take relativistic effects on the appearance of shocks into account when attempting to determine the intrinsic obliquity of shocks. Our model naturally leads to consideration of the interaction of the jetdriven expanding inner lobes with surrounding dense gas. We have suggested that radiative shocks driven into clouds (no. density ∼ 1 − 10 cm−3) are responsible for line emission from this gas. Outstanding problems are the confinement of the M 87 jet in the inner 100 pc and its initial approximately linear expansion.

Keywords

Group Velocity Proper Motion Helmholtz Instability Radiative Shock Recombination Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bicknell, G. V. & Begelman, M. C. 1996, ApJ, 467, 597CrossRefADSGoogle Scholar
  2. Binney, J. & Tabor, G. 1995, MNRAS, 276, 663ADSGoogle Scholar
  3. Biretta, J. A. 1993, in Astrophysical Jets, ed. D. Burgarella, M. Livio, & C. P. O'Dea, Volume 6 of Space Telescope Science Institute Symposium Series (Cambridge: Cambridge University Press), 263Google Scholar
  4. Biretta, J. A., Zhou, F., & Owen, F. N. 1995, ApJ, 447, 582CrossRefADSGoogle Scholar
  5. Birkinshaw, M. 1984, MNRAS, 208, 887zbMATHADSGoogle Scholar
  6. Birkinshaw, M. 1991, MNRAS, 252, 505 527zbMATHADSGoogle Scholar
  7. Blandford, R. D. & Königl, A. 1979, ApJ, 232, 34CrossRefADSGoogle Scholar
  8. Ford, H. C. & Butcher, H. 1979, ApJS, 41, 147CrossRefADSGoogle Scholar
  9. Hardee, P. E. 1982, ApJ, 261, 457CrossRefADSGoogle Scholar
  10. Hardee, P. E. 1987a, ApJ, 313, 607CrossRefADSGoogle Scholar
  11. Hardee, P. E. 1987b, ApJ, 318, 78CrossRefADSGoogle Scholar
  12. Harris, D. E., Biretta, J. A. & Junor, W., 1997, MNRAS, 284, L21Google Scholar
  13. Heinz, S. & Begelman, M. C. 1997, ApJ, 490, 653CrossRefADSGoogle Scholar
  14. Königl, A. 1980, Phys. Fluids, 23, 1083zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. Owen, F. N., Eilek, J. A., & Keel, W. C. 1990, ApJ, 362, 449CrossRefADSGoogle Scholar
  16. Rees, M. J. 1978, September), MNRAS, 184, 61PGoogle Scholar
  17. Reynolds, C. S., Fabian, A. C., Celotti, A., & Rees, M. J. 1996, MNRAS, 283, 873ADSGoogle Scholar
  18. Turland, B. D. 1975, MNRAS, 170, 281ADSGoogle Scholar
  19. White, R. E. & Sarazin, C. L. 1988, ApJ, 335, 688CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Geoffrey V. Bicknell
    • 1
  • Mitchell C. Begelman
    • 2
  1. 1.Australian National University Astrophysical Theory CentreAustralia
  2. 2.JILA University of ColoradoBoulderUSA

Personalised recommendations