M 87 as a galaxy

  • Walter Dehnen
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 530)


I review recent studies about the gravitational potential and stellar dynamics of M 87 in particular, and the dynamics of the stars in the presence of a super-massive central black hole, in general.

At large radii, investigations of both the X-ray emitting gas and the velocity distribution of globular clusters indicate the presence of large amounts of non-luminous matter, possibly belonging to the inner parts of the Virgo cluster.

At small radii, there is no evidence from the stellar kinematics, at most a hint, for the existence of a central point mass, whereas the gas dynamics reveal the presence of a highly concentrated mass in the centre of M 87, possibly a super-massive black hole (bh). Given the existence of such a central mass, the stellar kinematics indicate a strong tangential anisotropy of the stellar motion inside a few arcesconds. The implications of this result for the evolution and formation history of M 87 and its central bh are discussed. I also discuss in more general terms the structural changes that a highly concentrated central mass can induce in its parent galaxy.


Black Hole Velocity Dispersion Elliptical Galaxy Planetary Nebula Central Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnaboldi M., Freeman K., 1996, in Arnaboldi, Da Costa, Saha, eds., The Nature of Elliptical Galaxies A.S.P. Conf.Ser. 116, 54ADSGoogle Scholar
  2. Begelman, M.C., Blandford, R.D., Rees, M.J., 1980, Nature, 287, 307CrossRefADSGoogle Scholar
  3. Bender, R., Saglia, R.P., Gerhard, O.E., 1994, MNRAS, 269, 785ADSGoogle Scholar
  4. Binney, J.J., Mamon, G.A., 1982, MNRAS, 200, 361ADSGoogle Scholar
  5. Cohen, J.G., Ryzhov, A., 1997, ApJ, 486, 230CrossRefADSGoogle Scholar
  6. Ebisuzaki, T., Makino, J., Okumura, S.K., Nature, 354, 212Google Scholar
  7. Fabricant, D., Gorenstein, P., 1983, ApJ, 267, 535CrossRefADSGoogle Scholar
  8. Ford, H.C., et al., 1994, ApJ, 435, L27Google Scholar
  9. Gebhardt, K., et al., 1996, AJ, 112, 105CrossRefADSGoogle Scholar
  10. Gerhard, O.E., Binney, J.J., 1985, MNRAS, 216, 467ADSGoogle Scholar
  11. Goodman, J., Binney, J.J., 1984, MNRAS, 207, 511ADSGoogle Scholar
  12. Harm, R.J., et al., 1994, ApJ, 435, L35Google Scholar
  13. Kormendy, J., Richstone, D., 1995, ARA&A, 33, 581ADSGoogle Scholar
  14. Lauer, T.R. et al., 1992, AJ, 103, 703CrossRefADSGoogle Scholar
  15. Marconi, A., et al., 1997, MNRAS, 289, L21Google Scholar
  16. Merritt, D., 1987, ApJ, 319, 55CrossRefADSGoogle Scholar
  17. Merritt, D., Oh, S-P., 1997, AJ, 113, 1279CrossRefADSGoogle Scholar
  18. Merritt, D., Quinlan, G.D., 1998, ApJ, in pressGoogle Scholar
  19. Moore, B., et al., 1997, submitted to ApJ Letters (astro-ph/9709051)Google Scholar
  20. Mould, J.R. et al., 1990, AJ, 99, 1823CrossRefADSGoogle Scholar
  21. Nulsen, P.E.J., Böhringer, H., 1995, MNRAS, 274, 1093ADSGoogle Scholar
  22. Quinlan, G.D., 1996, NewA, 1, 35CrossRefADSGoogle Scholar
  23. Quinlan, G.D., et al., 1995, ApJ, 440, 554CrossRefADSGoogle Scholar
  24. Quinlan, G.D., Hernquist L., 1997, NewA, 2, 533CrossRefADSGoogle Scholar
  25. Sargent, W.L.W. et al., 1978, ApJ, 221, 731CrossRefADSGoogle Scholar
  26. van der Marel, R.P., 1994, MNRAS, 270, 271ADSGoogle Scholar
  27. Young, P., 1980, ApJ, 242, 1232CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Walter Dehnen
    • 1
  1. 1.Theoretical PhysicsOxfordUnited Kingdom

Personalised recommendations