Methods for electron-phonon systems

  • Eric Jeckelmann
  • Chunli Zhang
  • Steven R. White
Physical Applications Phonons And Disorder
Part of the Lecture Notes in Physics book series (LNP, volume 528)


The information contained in the density matrix allows one to truncate a large phononic Hilbert space without significant loss of accuracy. Thus, it is possible to study electron-phonon systems numerically with great accuracy. Coupled to a powerful numerical methods such as DMRG these approaches enable us to treat very large systems. These techniques could greatly improve our capability to perform numerical studies of many problems, such as electron-phonon systems, which involve a large or infinite Hilbert space.


Hilbert Space Density Matrix Exact Diagonalization Phonon State Density Matrix Renormalization Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10 345 (1993)CrossRefADSGoogle Scholar
  2. 2.
    S.R. White, Phys. Rev. Lett. 77, 3633 (1996)CrossRefADSGoogle Scholar
  3. 3.
    G. Wellein and H. Fehske, Phys. Rev. B 58, 6208 (1998)CrossRefADSGoogle Scholar
  4. 4.
    E.V.L. de Mello and J. Ranninger, Phys. Rev. B 55, 14 872 (1997)Google Scholar
  5. 5.
    H. Fehske, J. Loos, and G. Wellein, Z. Phys. B 104, 619 (1997)CrossRefADSGoogle Scholar
  6. 6.
    M. Capone, W. Stephan, and M. Grilli, Phys. Rev. B 56, 4484 (1997)CrossRefADSGoogle Scholar
  7. 7.
    A. Weisse and H. Fehske, Phys. Rev. B 58, 13 526 (1998)Google Scholar
  8. 8.
    L.G. Caron and S. Moukouri, Phys. Rev. Lett. 76, 4050 (1996)CrossRefADSGoogle Scholar
  9. 9.
    L.G. Caron and S. Moukouri, Phys. Rev. B 56, 8471 (1997)CrossRefADSGoogle Scholar
  10. 10.
    E. Jeckelmann and S.R. White, Phys. Rev. B 57, 6376 (1998)CrossRefADSGoogle Scholar
  11. 11.
    C. Zhang, E. Jeckelmann, and S.R. White, Phys. Rev. Lett. 80, 2661 (1998)CrossRefADSGoogle Scholar
  12. 12.
    R.J. Bursill, R.H. McKenzie and C.J. Hamer, Phys. Rev. Lett. 80, 5607 (1998)CrossRefADSGoogle Scholar
  13. 13.
    T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959); 8, 343 (1959)CrossRefADSGoogle Scholar
  14. 14.
    C. Zhang, E. Jeckelmann and S.R. White, in preparationGoogle Scholar
  15. 15.
    R.V. Pai, R. Pandit, H.R. Krishnamurthy and S. Ramasesha, Phys. Rev. Lett. 76, 2937 (1996)CrossRefADSGoogle Scholar
  16. 16.
    T.D. Kühner and H. Monien, Phys. Rev. B 58, R14741 (1998)Google Scholar
  17. 17.
    R.M. Noack, S.R. White and D.J. Scalapino, in D.P. Landau, K.-K. Mon, and H.-B. Schüttler (Eds.), Computer Simulations in Condensed Matter Physics VII, Springer (1994)Google Scholar
  18. 18.
    A.H. Romero, D.W. Brown, and K. Lindenberg, J. Chem. Phys. 109, 6540 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Eric Jeckelmann
    • 1
  • Chunli Zhang
    • 2
  • Steven R. White
    • 2
  1. 1.Fachbereich PhysikPhilipps-Universität MarburgMarburgGermany
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaIrvineUSA

Personalised recommendations