Walls, wetting and surface criticality

  • Enrico Carlon
Physical Applications Classical Statistical Physics
Part of the Lecture Notes in Physics book series (LNP, volume 528)


Monte Carlo Ising Model Critical Exponent Conformal Invariance Surface Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992)CrossRefADSGoogle Scholar
  2. 2.
    T. Nishino, J. Phys. Soc. Jpn. 64, 3598 (1995)zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    R. Evans, J. Phys. Cond. Matt, 2, 8989 (1990)CrossRefADSGoogle Scholar
  4. 4.
    D. Abraham, Phys. Rev. Lett. 44, 1165 (1980)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    For a general introduction on wetting and related topics see: S. Dietrich in Phase Transition and Critical Phenomena, Vol. 12, Eds. C. Domb and J.L. Lebowitz, Academic Press (1988)Google Scholar
  6. 6.
    E.V. Albano, K. Binder, D.W. Heermann and W. Paul, J. Chem. Phys. 91, 3700 (1989)CrossRefADSGoogle Scholar
  7. 7.
    A.O. Parry and R. Evans, J. Phys. A: Math. Gen. 25, 275 (1992)CrossRefADSGoogle Scholar
  8. 8.
    E.V. Albano, K. Binder and W. Paul, J. Phys. A: Math. Gen. 30, 3285 (1997)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    E. Carlon, A. Drzewiński and J. Rogiers, Phys. Rev. B 58, 5070 (1998)CrossRefADSGoogle Scholar
  10. 10.
    E. Carlon and A. Drzewiński, Phys. Rev. Lett. 79, 1591 (1997); Phys. Rev. E 57, 2626 (1998)CrossRefADSGoogle Scholar
  11. 11.
    F. Iglói and E. Carlon, cond-mat/9805083Google Scholar
  12. 12.
    E. Carlon and F. Iglói, Phys. Rev. B 57, 7877 (1998)CrossRefADSGoogle Scholar
  13. 13.
    See: P. Christe and M. Henkel, Introduction to Conformal Invariance and Its Applications to Critical Phenomena, Springer (1993)Google Scholar
  14. 14.
    M. Fisher and P.G. de Gennes, C.R. Acad. Sci. Paris B 287, 207 (1978)Google Scholar
  15. 15.
    S.R. White, Phys. Rev. Lett. 77, 3633 (1996)CrossRefADSGoogle Scholar
  16. 16.
    S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995)CrossRefADSGoogle Scholar
  17. 17.
    Bulk exponents for the case Q=2 and Q=3 have also been calculated by the corner transfer matrix method in: T. Nishino and K. Okunishi, J. Phys. Soc. Jpn. 66, 3040 (1997)zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Enrico Carlon
    • 1
  1. 1.Laboratoire de Physique des MatériauxUniversité Henri Poincaré, Nancy IVandœuvre-lès-Nancy CedexFrance

Personalised recommendations