Skip to main content

Properties of the hubbard chain

  • Physical Applications
  • Conference paper
  • First Online:
Density-Matrix Renormalization

Part of the book series: Lecture Notes in Physics ((LNP,volume 528))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.J. Emery in Highly Conducting One-Dimensional Solids, edited by J. Devreese, R. Evrand and V. Van Doren, Plenum Press, p 247 (1979)

    Google Scholar 

  2. J. Solyom, Adv. Phys. 28, 201 (1979)

    Article  ADS  Google Scholar 

  3. F.D.M. Haldane, J. Phys. C Solid State Phys. 14, 2585 (1981)

    Article  ADS  Google Scholar 

  4. H.J. Schulz, Int. J. Mod. Phys. B 5, 57 (1991)

    Article  ADS  Google Scholar 

  5. S. Daul and R.M. Noack, Phys. Rev. B 58, 2635 (1998)

    Article  ADS  Google Scholar 

  6. M. Fabrizio, Phys. Rev. B 54, 10054 (1996)

    Article  ADS  Google Scholar 

  7. S. Daul and R.M. Noack, unpublished

    Google Scholar 

  8. S. Daul, Ph.D. dissertation, Université de Fribourg, 1998, unpublished

    Google Scholar 

  9. S.R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

  10. S. Kneer, Diploma Thesis, Universität Würzburg (1997)

    Google Scholar 

  11. G. Bedürftig, B. Brendel, H. Frahm and R. M. Noack, Phys. Rev. B 58, 10225 (1998)

    Article  ADS  Google Scholar 

  12. For a discussion of the approximation of a continuous Fourier transform via a discrete Fourier transform see, for example, W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, second edition, Cambridge University press, chaps. 12–13 (1992)

    Google Scholar 

  13. M. Dzierzawa, in The Hubbard model, Ed. by D. Baeriswyl et al., New York (1995)

    Google Scholar 

  14. For the nearest-neighbor chain, the finite-size corrections are well-understood from the Bethe Ansatz. In particular, the lowest S=0 is often a “string” excited state, so that the second S=0 excited state is the lowest charge excitation. The gap Δ s E 0 (S=1) − E 0 (S=0) has higher order corrections which only converge at very large system sizes, but an alternative gap Δ′ s =E 1 (S z =1) − E 0 (S z =1), with E 1 (S z =1) the first spin-particle-hole-excitation, converges more quickly to the L=∞ result (G. Bedürftig, private communication).

    Google Scholar 

  15. C. Varma and A. Zawadowski, Phys. Rev. B 32, 7399 (1985)

    Article  ADS  Google Scholar 

  16. H.J. Schulz, Phys. Rev. B 53, 2959 (1996)

    Article  ADS  Google Scholar 

  17. L. Balents and M.P.A. Fisher, Phys. Rev. B 53, 12 133 (1996)

    Article  Google Scholar 

  18. R.M. Noack, S.R. White and D.J. Scalapino, Physica C 270, 281 (1996)

    Article  ADS  Google Scholar 

  19. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  20. M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

    Article  ADS  Google Scholar 

  21. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

    Article  MATH  ADS  Google Scholar 

  22. Y. Nagaoka, Phys. Rev. 147, 392 (1966)

    Article  ADS  Google Scholar 

  23. W. von der Linden and D.M. Edwards, J. Phys.: Condens. Matter 3, 4917 (1991)

    Article  ADS  Google Scholar 

  24. T. Hanisch, G.S. Uhrig and E. Müller-Hartmann, Phys. Rev. B 56, 13 960 (1997)

    Article  Google Scholar 

  25. R. Hirsch, Dissertation, Universität Köln, (1994): Zum Magnetismus stark korrelierter Fermionsysteme, Verlag Shaker, Aachen (1994)

    Google Scholar 

  26. S. Liang and H. Pang, Europhys. Lett. 32, 173 (1995)

    Article  ADS  Google Scholar 

  27. E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962)

    Article  MATH  ADS  Google Scholar 

  28. H. Tasaki, preprint cond-mat/9512169

    Google Scholar 

  29. D.C. Mattis and R.E. Peña, Phys. Rev. B 10, 1006 (1974)

    Article  ADS  Google Scholar 

  30. M. Sigrist, H. Tsunetsugu, K. Ueda and T.M. Rice, Phys. Rev. B 46, 13838 (1992)

    Article  ADS  Google Scholar 

  31. E. Müller-Hartmann, J. Low Temp. Phys. 99, 349 (1995)

    Article  ADS  Google Scholar 

  32. J. Wahle, N. Blümer, J. Schlipf, K. Held and D. Vollhardt, Phys. Rev. B 58, 12 749 (1988); D. Vollhardt et al., preprint cond-mat/9804112

    Google Scholar 

  33. S.R. White and I. Affleck, Phys. Rev. B 54, 9862 (1996) and references therein.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ingo Peschel Matthias Kaulke Xiaoqun Wang Karen Hallberg

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Noack, R.M., Daul, S., Kneer, S. (1999). Properties of the hubbard chain. In: Peschel, I., Kaulke, M., Wang, X., Hallberg, K. (eds) Density-Matrix Renormalization. Lecture Notes in Physics, vol 528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106070

Download citation

  • DOI: https://doi.org/10.1007/BFb0106070

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66129-0

  • Online ISBN: 978-3-540-48750-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics