Advertisement

Properties of the hubbard chain

  • Reinhard M. Noack
  • Stéphane Daul
  • Sebastian Kneer
Physical Applications Chains And Ladders
Part of the Lecture Notes in Physics book series (LNP, volume 528)

Keywords

Ferromagnetic Phase Open Boundary Condition Luttinger Liquid Fermi Point Density Matrix Renormalization Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.J. Emery in Highly Conducting One-Dimensional Solids, edited by J. Devreese, R. Evrand and V. Van Doren, Plenum Press, p 247 (1979)Google Scholar
  2. 1a.
    J. Solyom, Adv. Phys. 28, 201 (1979)CrossRefADSGoogle Scholar
  3. 1b.
    F.D.M. Haldane, J. Phys. C Solid State Phys. 14, 2585 (1981)CrossRefADSGoogle Scholar
  4. 2.
    H.J. Schulz, Int. J. Mod. Phys. B 5, 57 (1991)CrossRefADSGoogle Scholar
  5. 3.
    S. Daul and R.M. Noack, Phys. Rev. B 58, 2635 (1998)CrossRefADSGoogle Scholar
  6. 4.
    M. Fabrizio, Phys. Rev. B 54, 10054 (1996)CrossRefADSGoogle Scholar
  7. 5.
    S. Daul and R.M. Noack, unpublishedGoogle Scholar
  8. 6.
    S. Daul, Ph.D. dissertation, Université de Fribourg, 1998, unpublishedGoogle Scholar
  9. 7.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10345 (1993)CrossRefADSGoogle Scholar
  10. 8.
    S. Kneer, Diploma Thesis, Universität Würzburg (1997)Google Scholar
  11. 9.
    G. Bedürftig, B. Brendel, H. Frahm and R. M. Noack, Phys. Rev. B 58, 10225 (1998)CrossRefADSGoogle Scholar
  12. 10.
    For a discussion of the approximation of a continuous Fourier transform via a discrete Fourier transform see, for example, W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, second edition, Cambridge University press, chaps. 12–13 (1992)Google Scholar
  13. 11.
    M. Dzierzawa, in The Hubbard model, Ed. by D. Baeriswyl et al., New York (1995)Google Scholar
  14. 12.
    For the nearest-neighbor chain, the finite-size corrections are well-understood from the Bethe Ansatz. In particular, the lowest S=0 is often a “string” excited state, so that the second S=0 excited state is the lowest charge excitation. The gap Δ sE 0 (S=1) − E 0 (S=0) has higher order corrections which only converge at very large system sizes, but an alternative gap Δ′ s=E 1 (S z=1) − E 0 (S z=1), with E 1 (S z=1) the first spin-particle-hole-excitation, converges more quickly to the L=∞ result (G. Bedürftig, private communication).Google Scholar
  15. 13.
    C. Varma and A. Zawadowski, Phys. Rev. B 32, 7399 (1985)CrossRefADSGoogle Scholar
  16. 13a.
    H.J. Schulz, Phys. Rev. B 53, 2959 (1996)CrossRefADSGoogle Scholar
  17. 14.
    L. Balents and M.P.A. Fisher, Phys. Rev. B 53, 12 133 (1996)CrossRefGoogle Scholar
  18. 15.
    R.M. Noack, S.R. White and D.J. Scalapino, Physica C 270, 281 (1996)CrossRefADSGoogle Scholar
  19. 16.
    J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  20. 17.
    M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)CrossRefADSGoogle Scholar
  21. 17a.
    J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)zbMATHCrossRefADSGoogle Scholar
  22. 18.
    Y. Nagaoka, Phys. Rev. 147, 392 (1966)CrossRefADSGoogle Scholar
  23. 19.
    W. von der Linden and D.M. Edwards, J. Phys.: Condens. Matter 3, 4917 (1991)CrossRefADSGoogle Scholar
  24. 19a.
    T. Hanisch, G.S. Uhrig and E. Müller-Hartmann, Phys. Rev. B 56, 13 960 (1997)CrossRefGoogle Scholar
  25. 20.
    R. Hirsch, Dissertation, Universität Köln, (1994): Zum Magnetismus stark korrelierter Fermionsysteme, Verlag Shaker, Aachen (1994)Google Scholar
  26. 21.
    S. Liang and H. Pang, Europhys. Lett. 32, 173 (1995)CrossRefADSGoogle Scholar
  27. 22.
    E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962)zbMATHCrossRefADSGoogle Scholar
  28. 23.
    H. Tasaki, preprint cond-mat/9512169Google Scholar
  29. 24.
    D.C. Mattis and R.E. Peña, Phys. Rev. B 10, 1006 (1974)CrossRefADSGoogle Scholar
  30. 25.
    M. Sigrist, H. Tsunetsugu, K. Ueda and T.M. Rice, Phys. Rev. B 46, 13838 (1992)CrossRefADSGoogle Scholar
  31. 26.
    E. Müller-Hartmann, J. Low Temp. Phys. 99, 349 (1995)CrossRefADSGoogle Scholar
  32. 27.
    J. Wahle, N. Blümer, J. Schlipf, K. Held and D. Vollhardt, Phys. Rev. B 58, 12 749 (1988); D. Vollhardt et al., preprint cond-mat/9804112Google Scholar
  33. 28.
    S.R. White and I. Affleck, Phys. Rev. B 54, 9862 (1996) and references therein.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Reinhard M. Noack
    • 1
  • Stéphane Daul
    • 2
  • Sebastian Kneer
    • 3
  1. 1.Institut de Physique ThéoriqueUniversité de FribourgFribourgSwitzerland
  2. 2.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Institut für Theoretische PhysikUniversität Würzburg Am HublandWürzburgGermany

Personalised recommendations