Skip to main content

Critical behavior of weakly-disordered anisotropic systems in two dimensions

  • Conference paper
  • First Online:
  • 141 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 477))

Abstract

The critical behaviour of two-dimensional (2D) anisotropic systems with weak quenched disorder described by an Ising model (IM) with random bonds, the N-colour Ashkin-Teller model (ATM) and some of its generalizations is studied. In the critical region, these models are shown to be described by a multifermion field theory similar to the Gross-Neveu model with a few independent quartic coupling constants. Renormalization group calculations are used to obtain the temperature dependence near the critical point of some thermodynamic quantities and the large distance behaviour of the two-spin correlation function. The equation of state at criticality is also obtained within this framework. We find that the random models under consideration belong to the same universality class as that of the two-dimensional IM. The critical behaviour of the 3- and 4-state random-bond Potts models is also briefly discussed.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vl.S. Dotsenko and Vik.S. Dotsenko, Adv. in Phys. 32, 129 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. B.N. Shalaev, Phys. Rep. 237, 129 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  3. Vik.S. Dotsenko, Sov. Phys.-Uspekhi 38, 310 (1995).

    Google Scholar 

  4. K. Hirakawa and H. Ikeda, in Magnetic Properties of Layered Transition Metal Compounds, L.J. de Jongh (Ed.) (Kluwer Academic Publishers, New York 1990); and related articles in this book.

    Google Scholar 

  5. I.F. Lyuksyutov, A.G. Naumovets and V.L. Pokrovsky, Two-Dimensional Crystals (Academic Press, London 1992).

    Google Scholar 

  6. A.B. Harris and T.C. Lubensky, Phys. Rev. Lett. 33, 1540 (1974).

    Article  ADS  Google Scholar 

  7. D.E. Khmelnitskii, Soviet Phys. JETP. 68, 1960 (1975).

    Google Scholar 

  8. B.M. McCoy and T.T. Wu, Phys. Rev. 176, 631 (1968).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Shankar and G. Murthy, Phys. Rev. B 36, 536 (1987).

    ADS  MathSciNet  Google Scholar 

  10. B.N. Shalaev, Soviet Physics-Solid State 26, 1811 (1984).

    Google Scholar 

  11. R. Shankar, Phys. Rev. Lett. 58, 2466 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  12. A.W.W. Ludwig, Phys. Rev. Lett. 61, 2388 (1988).

    Article  ADS  Google Scholar 

  13. A.W.W. Ludwig, Nucl. Phys. B 330, 639 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Jug, Phys. Rev. B 27, 609 (1983).

    ADS  Google Scholar 

  15. J.-S. Wang, W. Selke, Vl.S. Dotsenko and V.B. Andreichenko, Nucl. Phys. B 344, 531 (1990)

    ADS  Google Scholar 

  16. J.-S. Wang, W. Selke, VI. S. Dotsenko and V.B. Andreichenko, Physica A 164, 221 (1990)

    ADS  Google Scholar 

  17. J.-S. Wang, W. Selke, VI. S. Dotsenko and V.B. Andreichenko, Europhys. Lett. 11, 301 (1990)

    Article  ADS  Google Scholar 

  18. H.-O. Heuer H.-O, Phys. Rev. B 45, 5691 (1992)

    ADS  Google Scholar 

  19. J.-K. Kim, Phys. Rev. Lett. 70, 1735 (1993)

    Article  ADS  Google Scholar 

  20. L.N. Schur and A.L. Talapov, Europhys. Lett. 27, 193 (1994)

    Article  ADS  Google Scholar 

  21. S. Wiseman and E. Domany, Phys. Rev. E 51, 3074 (1995).

    ADS  Google Scholar 

  22. P. Bak, Phys. Rev. B 14, 3980 (1976)

    ADS  Google Scholar 

  23. P. Bak and D. Mukamel, Phys. Rev. B 13, 5086 (1976)

    ADS  Google Scholar 

  24. D. Mukamel and S. Krinsky, Phys. Rev. B 13, 5065, 5078 (1976)

    ADS  Google Scholar 

  25. S.A. Brazovskii, I.E. Dzyaloshinskii and B.G. Kukharenko, Sov. Phys.-JETP 43, 1178 (1976)

    ADS  Google Scholar 

  26. P. Bak, S. Krinsky and D. Mukamel, Phys. Rev. Lett. 36, 52 (1976).

    Article  ADS  Google Scholar 

  27. R. Shankar, Phys. Rev. Lett. 55, 453 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  28. Y.Y. Goldschmidt, Phys. Rev. Lett. 56, 1627 (1986).

    Article  ADS  Google Scholar 

  29. B.N. Shalaev, Sov. Phys.-Solid State 31, 51 (1989).

    Google Scholar 

  30. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London 1982).

    MATH  Google Scholar 

  31. J.B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Fradkin and L. Susskind, Phys. Rev. D 17, 2637 (1978).

    ADS  MathSciNet  Google Scholar 

  33. R. Fisch, J. Stat. Phys. 18, 111 (1978).

    Article  ADS  Google Scholar 

  34. J.-B. Zuber and C. Itzykson, Phys. Rev. D 15, 2875 (1977).

    ADS  Google Scholar 

  35. P. Di Francesco, H. Saleur and J.-B. Zuber, Nucl. Phys., B 290, [FS20], 527 (1987).

    Article  ADS  Google Scholar 

  36. C. Itzykson and J.-M. Drouffe, Statistical field theory vol.2 (Cambridge Univ. Press, Cambridge 1989).

    Google Scholar 

  37. G. Grest and M. Widom, Phys. Rev. B 24, 6508 (1981).

    ADS  MathSciNet  Google Scholar 

  38. J.-C. Toledano, L. Michel, P. Toledano and E. Brezin, Phys. Rev. B 31, 7171 (1985).

    ADS  MathSciNet  Google Scholar 

  39. E. Fradkin, Phys. Rev. Lett. 53, 1967 (1984).

    Article  ADS  Google Scholar 

  40. A. Aharony, Phys. Rev. Lett. 31, 1494 (1973).

    Article  ADS  Google Scholar 

  41. A.A. Lushnikov, Sov. Phys.-JETP 56, 215 (1969).

    Google Scholar 

  42. E. Witten, Nucl. Phys. B 142, 285 (1978).

    Article  ADS  Google Scholar 

  43. G. Jug and B.N. Shalaev, submitted to Phys. Rev. B.

    Google Scholar 

  44. VI.S. Dotsenko and Vik.S. Dotsenko, J. Phys. A 17, L301 (1984); Vik.S. Dotsenko, J. Phys. A 18, L241 (1985).

    Google Scholar 

  45. Vl.S. Dotsenko and V.A. Fateev, Nucl. Phys. B 240, 312 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  46. A.W.W. Ludwig, Nucl. Phys. B 285, 97 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  47. A.W.W. Ludwig and J. Cardy, Nucl. Phys. B 285, [FS19], 687 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  48. VI.S. Dotsenko, M. Picco and P. Pujol, Phys. Lett. B 377, 113 (1995).

    ADS  MathSciNet  Google Scholar 

  49. M.A. Novotny and D.P. Landau, Phys. Rev. B 24, 1468 (1981).

    ADS  Google Scholar 

  50. D. Andelman and A.N. Berker, Phys. Rev. B 29, 2630 (1984).

    ADS  Google Scholar 

  51. L. Schwenger, K. Budde, C. Voges and H. Pfnur, Phys. Rev. Lett. 73 296 (1994).

    Article  ADS  Google Scholar 

  52. M. Kardar, A. Stella, G. Sartoni and B. Derrida, Phys. Rev. E 52, R1269 (1995); Cardy J.L. cond-mat@xxx.lanl.gov. No. 9511112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zygmunt Petru Jerzy Przystawa Krzysztof Rapcewicz

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Jug, G., Shalaev, B.N. (1996). Critical behavior of weakly-disordered anisotropic systems in two dimensions. In: Petru, Z., Przystawa, J., Rapcewicz, K. (eds) From Quantum Mechanics to Technology. Lecture Notes in Physics, vol 477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106027

Download citation

  • DOI: https://doi.org/10.1007/BFb0106027

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61792-1

  • Online ISBN: 978-3-540-70724-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics