Skip to main content

Lie symmetries of generalized Ermakov systems

  • Dynamical Systems
  • Conference paper
  • First Online:
Dynamical Systems, Plasmas and Gravitation

Part of the book series: Lecture Notes in Physics ((LNP,volume 518))

  • 153 Accesses

Abstract

The Lie point symmetry analysis of Ermakov systems is extended to the case where the frequency function in the equations of motion depends also on the dynamical variables and their derivatives. From this new standpoint, a quite general class of two dimensional oscillators with nonlinear coupling can be viewed as a Hamiltonian Ermakov system possessing a Lie point symmetry and is shown to be completely integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athorne, C. (1991): Kepler-Ermakov problems. J. Phys. A: Math. Gen. 24, L1385–L1389

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Athorne, C. (1991): On generalized Ermakov systems. Phys. Lett. A 159, 375–378

    Article  ADS  MathSciNet  Google Scholar 

  • Athorne, C., Rogers, C., Ramgulam, U., Osbaldestin, A. (1990): On linearization of the Ermakov system. Phys. Lett. A 143, 207–212

    Article  ADS  MathSciNet  Google Scholar 

  • Burgan, J.R., Feix, M.R., Fijalkow, E., Munier, A. (1979): Solution of the multidimensional quantum harmonic oscillator with time-dependent frequencies. Phys. Lett. A 74, 11–14

    Article  ADS  MathSciNet  Google Scholar 

  • Cerveró, J.M., Lejarreta, J.D. (1991): Ermakov Hamiltonians. Phys. Lett. A 156, 201–205

    Article  ADS  MathSciNet  Google Scholar 

  • Courant, E.D., Snyder, H.D. (1958): Theory of the alternating-gradient synchroton. Ann. Phys. 3, 1–48

    Article  MATH  ADS  Google Scholar 

  • Ermakov, V.P. (1880): Second order differential equations. Conditions of complete integrability. Univ. Izv. Kiev Ser III 9, 1–25

    Google Scholar 

  • Goedert, J. (1989): Second constants of motion for generalized Ermakov systems. Phys. Lett. A 136, 391–394

    Article  ADS  MathSciNet  Google Scholar 

  • Goncharenko, A.M., Logvin, Y.A., Samson A.M., Shapovalov, P.S., Turovets, S.I. (1991): Ermakov Hamiltonian systems in nonlinear optics of elliptic Gaussian beams. Phys. Lett. A 160, 138–142

    Article  ADS  MathSciNet  Google Scholar 

  • Govinder, K.S., Athorne, C., Leach, P.G.L. (1993): The algebraic structure of generalized Ermakov systems in three dimensions. J. Phys. A: Math. Gen. 26, 4035–4046

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Govinder, K.S., Leach, P.G.L. (1994): Integrability of generalized Ermakov systems. J. Phys. A: Math. Gen. 27, 4153–4156

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Govinder, K.S., Leach, P.G.L. (1994): Ermakov systems: a group theoretical approach. Phys. Lett. A 186, 391–395

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Haas, F., Goedert, J. (1996): On the Hamiltonian structure of Ermakov systems. J. Phys. A: Math. Gen. 29, 4083–4092

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Haas, F., Goedert, J. (1997): On the Lie Symmetries of Ermakov Systems. Submitted for publication in Phys. Lett. A.

    Google Scholar 

  • Leach, P.G.L. (1991): Generalized Ermakov systems. Phys. Lett. A 158, 102–106

    Article  ADS  MathSciNet  Google Scholar 

  • Lewis, H.R (1967): Classical and quantum systems with time-dependent harmonic-oscillator-type hamiltonians. Phys. Rev. Lett. 18, 510–512

    Article  ADS  Google Scholar 

  • Lewis, H.R., Riesenfeld, W.B. (1969), An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458–1473

    Article  MathSciNet  ADS  Google Scholar 

  • Lutzky, M. (1980): Generalized Ray-Reid systems. Phys. Lett. A 78, 301–303

    Article  ADS  MathSciNet  Google Scholar 

  • Ray, J.R. (1979): Cosmological particle creation. Phys. Rev. D 20, 2632–2633

    Article  ADS  Google Scholar 

  • Ray, J.R. (1982): Minimum-uncertainty coherent states for certain time-dependent systems. Phys. Rev. D 25, 3417–3419

    Article  ADS  Google Scholar 

  • Ray, J.R., Hartley, J.G. (1982): Solutions to N-dimensional time-dependent SchrÖdinger equations. Phys. Lett. A 88, 125–127

    Article  ADS  MathSciNet  Google Scholar 

  • Ray, J.R., Reid, J.L. (1979a): More exact invariants for the time-dependent harmonic oscillator. Phys. Lett. A 71, 317–318

    Article  ADS  MathSciNet  Google Scholar 

  • Ray, J.R., Reid, J.L. (1979): Exact time-dependent invariants for N-dimensional systems. Phys. Lett. A 74, 23–25

    Article  ADS  MathSciNet  Google Scholar 

  • Reid, J.L., Ray, J.R. (1980): Ermakov systems, nonlinear superposition, and solutions of nonlinear equations of motion. J. Math. Phys. 21, 1583–1587

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rogers, C., Hoenselaers, C., Ray, J.R. (1993): On (2 + 1)-dimensional Ermakov systems. J. Phys. A: Math. Gen. 26, 2625–2633

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rogers, C., Ramgulam, U. (1989): A non-linear superposition principle and Lie group invariance: application in rotating shallow water theory. Int. J. Non-Linear Mech. 24, 229–236

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Schief, W.K., Rogers, C., Bassom, A.P. (1996): Ermakov systems of arbitrary order and dimension: structure and linearization. J. Phys. A: Math. Gen. 29, 903–911

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Shahinpoor, M., Nowinski, J.L. (1971): Exact solution to the problem of forced large amplitude radial oscillatons of a thin hyper-elastic tube. Int. J. Non-Linear Mech. 6, 193–207

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. G. L. Leach S. E. Bouquet J.-L. Rouet E. Fijalkow

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Haas, F., Goedert, J. (1999). Lie symmetries of generalized Ermakov systems. In: Leach, P.G.L., Bouquet, S.E., Rouet, JL., Fijalkow, E. (eds) Dynamical Systems, Plasmas and Gravitation. Lecture Notes in Physics, vol 518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105933

Download citation

  • DOI: https://doi.org/10.1007/BFb0105933

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65467-4

  • Online ISBN: 978-3-540-49251-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics