Skip to main content

1, 2, 3 plasmas!

  • Plasma And Gravitation
  • Conference paper
  • First Online:
Book cover Dynamical Systems, Plasmas and Gravitation

Part of the book series: Lecture Notes in Physics ((LNP,volume 518))

  • 161 Accesses

Abstract

Playing with the geometrical dimensionality of plasmas models gives us the opportunity to explore models with different properties. In particular, a lower dimensionality allows us to avoid a quantum description of interactions between oppositely charged particles, totally in one dimension and partially in two dimensions. We will describe some models; from the One and Two Component Plasma in one and two dimensions to the “true” three dimensional plasma combined with a Thomas-Fermi description of the electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alder, B. J., Hoover, W. G., Wainwright, T. E. (1963): Cooperative motion of hard disks leading to melting. Phys. Rev. Lett. 11, 241–243

    Article  ADS  Google Scholar 

  • Baus, M., Hansen, J. P. (1980): Statistical Mechanics of Simple Coulomb Systems. Physics Reports 59, 1–94

    Article  ADS  MathSciNet  Google Scholar 

  • Caillol, J. M., Levesque, D., Weis, J. J., Hansen, J. P. (1982): A Monte Carlo study of the classical two-dimensional one-component plasma. J. Statistical Physics 28, 324–348

    Article  ADS  Google Scholar 

  • Calinon, R., Choquard, P., Jamin, E., Navet, M. (1980): On the equation of state of the 2-D Wigner model, in Ordering in Two Dimensions (Sinha, Elsevier North Holland), 317–322

    Google Scholar 

  • Car, R., Parrinello, M. (1985): Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 55, 2471–2474

    Article  ADS  Google Scholar 

  • Choquard, P., Clérouin, J. (1983): Cooperative Phenomena below Melting of the One-Component Two-Dimensional Plasma. Phys. Rev. Lett. 50, 2086–2089

    Article  ADS  Google Scholar 

  • Choquard, P., Piller, B., Rentsch, R., Clérouin, J., Hansen, J. P. (1989): Ionization and phase diagram of classical Thomson atoms on a triangular lattice. Phys. Rev. A 40, 931–945

    Article  ADS  Google Scholar 

  • Clérouin, J., Bernard, S. (1997): Dense hydrogen plasma: a comparaison between models. Phys. Rev. E 56, 3534–3539

    Article  ADS  Google Scholar 

  • Clérouin, J., Hansen, J. P. (1985): Delocalization Transition of a Classical Two-Dimensional Coulomb Lattice. Phys. Rev. Lett. 54, 2277–2280

    Article  ADS  Google Scholar 

  • Clérouin, J., Hansen, J. P., Piller, B. (1987): On the Dielectric Phase of the Periodic Two-Dimensional Coulomb Gas: Optical Modes, Delocalization and Melting. Europhysics Lett. 4, 771–776

    Article  ADS  Google Scholar 

  • Clérouin, J., Hansen, J. P., Piller, B. (1987): Two-dimensional classical electron gas in a periodic field: Delocalization and dielectric-plasma transition. Phys. Rev. B 36, 2793–2810

    Article  ADS  Google Scholar 

  • Clérouin, J., Pollock, E. L., Zérah, G. (1992): Thomas-Fermi Molecular Dynamics. Phys. Rev. A 46, 5130–5137

    Article  ADS  Google Scholar 

  • Clérouin, J., Zérah, G., Benisti, D., Hansen, J. P. (1990): Plasma Simulations Using the Car-Parrinello Method. Europhysics Lett. 13, 685–690

    Article  ADS  Google Scholar 

  • Clérouin, J., Zérah, G., Hansen, J. P. (1991): Plasma Simulations Using the Car-Parrinello Method, Proceedings of Computer Simulation in Material Science conference, Aussois France (M. Meyer and V. Pontikis ed., Kluwer Academic)

    Google Scholar 

  • Doan, N. V., Adda, Y. (1987): Nouveau mécanisme de diffusion dans les solides à haute température. Philosophical Magazine A 56, 269–283

    Article  ADS  Google Scholar 

  • Dubin, D. H. E. (1996): Correlation effects on static and dynamic properties of nonneutral plasmas, Proceedings of Physics of Strongly Coupled Plasmas conference, Binz/Rügen Germany (W. Kraeft and M. Schlanges ed., World Scientific)

    Google Scholar 

  • Feix, M. R. (1976): Computer Experiments in One-Dimensional Plasmas, Proceedings of Strongly Coupled Plasmas conference, Orleans France (C. G. Kalman ed., Plenum, New York)

    Google Scholar 

  • Gallavoti, G., Nicolo, F. (1985): The “Screening Phase Transitions” in the Two-Dimensional Coulomb Gas. J. Statistical Physics 39, 133–152

    Article  ADS  Google Scholar 

  • Grimes, C. C., Adams, G. (1979): Evidence for a Liquid-to-Crystal Phase Transition in a Classical, Two-Dimensional Sheet of Electrons. Phys. Rev. Lett. 42, 795

    Article  ADS  Google Scholar 

  • Hansen, J. P. (1986): Molecular-Dynamics Simulation of Coulomb Systems in Two and Three Dimensions, Proceedings of Molecular Dynamics Simulations of Statistical-Mechanical Systems conference, Varenna Italy (G. Ciccotti and W. G. Hoover ed., Soc. Italiana di Fisica Bologna)

    Google Scholar 

  • Hansen, J. P., McDonald, I. R. (1981): Microscopic simulation of a strongly coupled hydrogen plasma. Phys. Rev. A 28, 2041–2059

    Article  ADS  Google Scholar 

  • Kosterlitz, J. M., Thouless, D. J. (1973): Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C6, 1181–1203

    ADS  Google Scholar 

  • Lotte, P., Feix, M. R. (1984): Plasma models and rescaling methods. J. Plasma Physics 31, 141–151

    Article  ADS  Google Scholar 

  • Minoo, H., Gombert, M. M., Deutsch, C. (1981): Temperature-dependent Coulomb interactions in hydrogenic systems. Phys. Rev. A 23, 924–943

    Article  ADS  Google Scholar 

  • More, D. (1983): Atomic Processes in High-Density Plasmas (Plenum, New-York)

    Google Scholar 

  • Parr, R. G., Yang, W. (1989): Density-Functional Theory of Atoms and Molecules (Oxford Science, Oxford)

    Google Scholar 

  • Penman, J. I., Clérouin, J., Zérah, G. (1995): Equation of state of a hydrogen plasma by density functional molecular dynamics. Phys. Rev. E 51, R5224–R5227

    Article  ADS  Google Scholar 

  • Remler, D. K., Madden, P. (1990): Molecular Dynamics without effective potentials via the Car-Parrinello approach. Mol. Phys. 70, 921–966

    Article  ADS  Google Scholar 

  • Yates, K., Newman, D. J., DeGroot, P. A. J. (1995): Effect of pin density on planar vortex mobility. Phys. Rev. B 52, R13149–R13151

    Article  ADS  Google Scholar 

  • Zérah, G., Clérouin, J., Pollock, E. L. (1992): Thomas-Fermi Molecular-Dynamics, Linear Screening, and Mean-Field Theories of Plasmas. Phys. Rev. Lett. 69, 446–449

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. G. L. Leach S. E. Bouquet J.-L. Rouet E. Fijalkow

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Clérouin, J. (1999). 1, 2, 3 plasmas!. In: Leach, P.G.L., Bouquet, S.E., Rouet, JL., Fijalkow, E. (eds) Dynamical Systems, Plasmas and Gravitation. Lecture Notes in Physics, vol 518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105916

Download citation

  • DOI: https://doi.org/10.1007/BFb0105916

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65467-4

  • Online ISBN: 978-3-540-49251-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics