Skip to main content

Chromospheric dynamics — What can be learnt from numerical simulations

  • Structure And Flows In The Upper Atmospere
  • Conference paper
  • First Online:
Solar and Heliospheric Plasma Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 489))

Abstract

Observations of the solar chromosphere are often interpreted using methods derived from static modeling (e.g., the Vernazza et al. 1981 model atmospheres and work based on such models) or linear theory (e.g., phase relations). Recent numerical simulations have shown that such an analysis can be very misleading. It is found that enhanced chromospheric emission, which corresponds to an outwardly increasing semi-empirical temperature structure, can be produced by wave motions without any increase in the mean gas temperature. Thus, despite long held beliefs, the Sun may not have a classical chromosphere in magnetic field free internetwork regions. This dynamic picture is consistent with observations in CO lines and the calcium H and K bright grains. More opaque lines, on the other hand, seem to show emission all of the time. This indicates the existence of a hotter, magnetic, component that increases in importance with height.

The simulations closely match the observed behaviour of Ca II H2v bright grains down to the level of individual grains. The bright grains are produced by shocks near 1 Mm above where the optical depth is unity at 500 nm (τ 500=1). These shocks are primarily due to waves from the photosphere with a frequency slightly above the acoustic cutoff frequency. The concept of a fixed formation height is of little use in the chromosphere. The temperature spikes at shock fronts may produce doublypeaked intensity contribution functions with one peak at τ v=1 and another at the shock. The mean height of formation for lines and continua formed around 1 Mn can vary greatly with time and does not necessarily correspond to the actual layers emitting the photons. When waves in the chromosphere have large amplitude, linear perturbation theory is not valid since the passage of waves changes the atmosphere fundamentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bocchialini, K., Vial, J.-C., and Koutchmy, S. (1994): Dynamical properties of the chromosphere in and out of the solar magnetic network. ApJ 423, L67–L70

    Article  ADS  Google Scholar 

  • Brekke, P. and Kjeldseth-Moe, O. (1994): New Radiometric Values of the Solar UV Continuum Radiation 1500–1700 Å. ApJ pp. L55–L58

    Google Scholar 

  • Carlsson, M. and Stein, R. F. (1992): Non-LTE Radiating Acoustic Shocks and CaII K2V Bright Points. ApJ 397, L59

    Google Scholar 

  • Carlsson, M. and Stein, R. F. (1994): Non-LTE Radiation Shock Dynamics in the Solar Chromosphere., Proc. Mini-Workshop on Chromospheric Dynamics, Institute of Theoretical Astrophysics, Oslo, 47–77

    Google Scholar 

  • Carlsson, M. and Stein, R. F. (1995): Does a Nonmagnetic Solar Chromosphere Exist?. ApJ 440, L29–L32

    Article  ADS  Google Scholar 

  • Carlsson, M. and Stein, R. F. (1997): Formation of Calcium H and K Bright Grains. ApJ (submitted)

    Google Scholar 

  • Cook, J. W., Brueckner, G. E., and Bartoe, J.-D. F. (1983): High-resolution telescope and spectrograph observations of solar fine structure in the 1600 Å region. ApJ 270, L89–L93

    Article  ADS  Google Scholar 

  • Fontenla, J. M., Avrett, E. H., and Loeser, R. (1993): ApJ 406, 319–345

    Article  ADS  Google Scholar 

  • Gustafsson, B. (1973): Uppsala Astr. Obs. Ann. 5, No. 6

    Google Scholar 

  • Harvey, J., Jefferies, S., Pomerantz, M., and Duvall, T., J. (1992): Global Observations of Chromospheric Oscillations. BAAS 180, 1705

    ADS  Google Scholar 

  • Hoekzema, N. (1994): On CI Jets and 160 nm Internetwork Bright-points., Proc. Mini-Workshop on Chromospheic Dynamics, Institute of Theoretical Astrophysics, Oslo, 111–120

    Google Scholar 

  • Hofmann, J., Steffens, S., and Deubner, F. L. (1996): K-grains as a three-dimensional phenomenon. II. Phase analysis of the spatio-temporal pattern. A&A 308, 192–198

    ADS  Google Scholar 

  • Judge, P. G., Hubeny, V., and Brown, J. C. (1997): Fundamental Limitations of Emission Line Spectra as Diagnostics of Plasma Temperature and Density Structure. ApJ (in press)

    Google Scholar 

  • Kalkofen, W. (1996): Chromospheric Oscillations in K 2v Bright Points. ApJ 468, L69–L72

    Article  ADS  Google Scholar 

  • Kalkofen, W., Rossi, P., Bodo, G. and Massaglia, M. (1992): The 3 min Oscillations in Chromospheric Bright Points. in M.S. Giampapa, J.A. Bookbinder (eds.), Seventh Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, Astron. Soc. Pac. Conf. Series, 26, 543–545

    Google Scholar 

  • Lemaire, P. and Skumanich, A. (1973): A&A 22, 61

    ADS  Google Scholar 

  • Lites, B. W., Rutten, R. J., and Kalkofen, W. (1993): Dynamics of the Solar Chromosphere. I. Long-Period Network Oscillations. ApJ 414, 345–356

    Article  ADS  Google Scholar 

  • Rammacher, W., Ulmschneider, P. (1992): Acoustic waves in the solar atmosphere IX. Three minute pulsations driven by shock overtaking. A&A 253, 586–600

    MATH  ADS  Google Scholar 

  • Rutten, R. J. and Uitenbroek, H. (1991): Ca II H2v and K2v Cell Grains. Solar Phys. 134, 15–71

    Article  ADS  Google Scholar 

  • Solanki, S. K., Livingston, W., and Ayres, T. (1994): New Light on the Heart of Darkness of the Solar Chromosphere. Science 263, 64–66

    Article  ADS  Google Scholar 

  • Staath, E. and Lemaire, P. (1995): High resolution profiles of the Mg II h and Mg II k lines. A&A 295, 517

    ADS  Google Scholar 

  • Steffens, S., Hofmann, J., and Deubner, F. L. (1996): K-grains as a three-dimensional phenomenon. I. Statistics and spatial evolution. A&A 307, 288

    ADS  Google Scholar 

  • Uitenbroek, H., Noyes, R. W., and Rabin, D. (1994): Imaging spectroscopy of the solar CO lines at 4.67 µm. ApJ 432, L67–L70

    Article  ADS  Google Scholar 

  • Vernazza, J. E., Avrett, E. H., and Loeser, R. (1981): Structure of the Chromosphere. III. Models of the EUV Brightness Components of the Quiet Sun. ApJS 45, 635–725

    Article  ADS  Google Scholar 

  • Von Uexkuell, M. and Kneer, F. (1995): Oscillations of the Sun's chromosphere. VII. K grains revisited.. A&A 294, 252–259

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George M. Simnett Constantine E. Alissandrakis Loukas Vlahos

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Carlsson, M., Stein, R.F. (1997). Chromospheric dynamics — What can be learnt from numerical simulations. In: Simnett, G.M., Alissandrakis, C.E., Vlahos, L. (eds) Solar and Heliospheric Plasma Physics. Lecture Notes in Physics, vol 489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105675

Download citation

  • DOI: https://doi.org/10.1007/BFb0105675

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63072-2

  • Online ISBN: 978-3-540-69124-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics