Advertisement

Error estimates on averages of correlated data

  • Henrik Flyvbjerg
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 501)

Abstract

We describe how the true statistical error on an average of correlated data can be obtained with ease and efficiency by a renormalization group method. The method is illustrated with numerical and analytical examples having finite as well as infinite range correlations.

Keywords

Correlation Function Correlation Length Correlate Data Blocking Method Spin Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wilson, K., Monte Carlo calculations for the lattice gauge theory. In’ t Hooft G. et al., editor, Recent Developments in Gauge Theories, (Cargése, 1979. Plenum, New York, 1980).Google Scholar
  2. [2]
    Whitmer, C., Phys. Rev. D 29 306 (1984).ADSGoogle Scholar
  3. [3]
    Jacucci, G. and Rahman, A., Nuovo Cimento D 4 341 (1984).CrossRefADSGoogle Scholar
  4. [4]
    Gottlieb, S., Mackenzie, P. B., Thacker, H. B., Weingarten, D., Nucl. Phys. B 263 704 (1986).CrossRefADSGoogle Scholar
  5. [5]
    Allen, M. P. and Tildesley, D. J., Computer simulation of liquids. (Clarendon Press, Oxford. 1987).zbMATHGoogle Scholar
  6. [6]
    Flyvbjerg, H. and Petersen, H. G., J. Chem. Phys. 91 461 (1989).CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    Binder, K., Monte Carlo investigations. In Domb, C. and Green, M., editors, Phase Transitions and Critical Phenomena, volume 5. (Academic, New York, 1976).Google Scholar
  8. [8]
    Binder, K., Theory and “technical” aspects of Monte Carlo simulations. In Binder, K., editor, Monte Carlo Methods in Statistical Physics, volume 7 of Topics in Current Physics. 2nd ed. (Springer-Verlag, New York, 1979, 1986).Google Scholar
  9. [9]
    Binder, K. and Stauffer, D., A simple introduction to Monte Carlo simulation and some specialized topics. In Binder, K., editor, Applications of the Monte Carlo Method in Statistical Physics, volume 36 of Topics in Current Physics. 2nd ed. (Springer, New York, 1984, 1987).Google Scholar
  10. [10]
    Daniell, G. J., Hey, A. J. G., and Mandula, J. E., Phys. Rev. D 30 2230 (1984).ADSGoogle Scholar
  11. [11]
    Pollock, E. L. and Alder, B. J., Physica A 102 1 (1980).ADSGoogle Scholar
  12. [12]
    de Leeuw, S. W., Perram, J. W., and Smith, E. R., Proc. R. Soc. London Ser. A 373 27 (1980).ADSCrossRefGoogle Scholar
  13. [13]
    Petersen, H. G., de Leeuw, S. W., and Perram, J. W., Mol. Phys. 66 637 (1989).CrossRefADSGoogle Scholar
  14. [14]
    Miller, R. G., Biometrika 61 1 (1974).zbMATHMathSciNetGoogle Scholar
  15. [15]
    Efron, B., SIAM Review 21 460 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Efron, B., The Jackknife, the Bootstrap and Other Resampling Plans, volume 38 of Regional Conference Series in Applied Mathematics. (SIAM, 1982).Google Scholar
  17. [17]
    Efron, B. and Tibshirani, R. J., An introduction to the bootstrap. (Chapman & Hall, London, 1993).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Henrik Flyvbjerg
    • 1
    • 2
  1. 1.Höchstleistungsrechnenzentrum (HLRZ) Forschungszentrum JülichJülichGermany
  2. 2.Department of Optics and Fluid DynamicsRisø National LaboratoryRoskildeDenmark

Personalised recommendations