Advertisement

Introduction to Monte Carlo algorithms

  • Werner Krauth
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 501)

Abstract

These lectures that I gave in the summer of 1996 at the Beg-Rohu (France) and Budapest summer schools discuss the fundamental principles of thermodynamic and dynamic Monte Carlo methods in a simple and light-weight fashion. The key-words are Markov chains, sampling, detailed balance, a priori probabilities, rejections, ergodicity, “Faster than the clock algorithms”.

The emphasis is on orientation, which is difficult to obtain (all the mathematics being simple). A firm sense of orientation is essential, because it is easy to lose direction, especially when you venture to leave the well trodden paths established by common usage.

The discussion will remain quite basic (and I hope, readable), but I will make every effort to drive home the essential messages: the crystal-clearness of detailed balance, the main problem with Markov chains, the large extent of algorithmic freedom, both in thermodynamic and dynamic Monte Carlo, and the fundamental differences between the two problems.

Keywords

Ising Model Detailed Balance Monte Carlo Algorithm Acceptance Probability Metropolis Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical Recipes, 2nd edition, Cambridge University Press (1992).Google Scholar
  2. [2]
    Lee, J., Strandburg K. J., Phys. Rev. B 46 11190 (1992).ADSGoogle Scholar
  3. [3]
    Pollock, E. L., Ceperley, D. M., Phys. Rev. B 30, 2555 (1984), B 36 8343 (1987)ADSGoogle Scholar
  4. [3a]
    Ceperley, D. M, Rev. Mod. Phys. 67, 1601 (1995).CrossRefGoogle Scholar
  5. [4]
    Caracciolo, S., Pelissetto, A., Sokal, A. D., Phys. Rev. Lett 72 179 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [5]
    Swendsen, R. H., Wang, J.-S., Phys. Rev. Lett. 63, 86 (1987).CrossRefADSGoogle Scholar
  7. [6]
    Wolff, U., Phys. Rev. Lett. 62, 361 (1989).CrossRefADSGoogle Scholar
  8. [7]
    Ferdinand A. E., Fisher, M. E., Phys. Rev. 185 185 (1969).CrossRefGoogle Scholar
  9. [8]
    Shore, J. D., Holzer, M., Sethna, J. P., Phys Rev. B 46 11376 (1992).ADSGoogle Scholar
  10. [9]
    Bortz, A. B., Kalos, M. H., Lebowitz, J. L., J. Comput. Phys. 17, 10 (1975)CrossRefADSGoogle Scholar
  11. [9]a
    cf also: Binder, K., in Monte Carlo Methods in Statistical Physics, edited by K. Binder, 2nd ed. (Springer Verlag, Berlin, 1986, sect 1.3.1).Google Scholar
  12. [10]
    Novotny, A. M., Computers in Physics 9 46 (1995).CrossRefADSGoogle Scholar
  13. [11]
    Krauth, W., Pluchery, O., J. Phys. A: Math Gen 27, L715 (1994).Google Scholar
  14. [12]
    Krauth, W., Mézard, M., Z. Phys. B 97 127 (1995).CrossRefADSGoogle Scholar
  15. [13]
    Wang, J.-S., Int. J. Mod. Phys. C 5, 707 (1994).ADSGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Werner Krauth
    • 1
  1. 1.Ecole Normale SupérieureCNRS-Laboratoire de Physique StatistiqueParis Cedex 05France

Personalised recommendations