Skip to main content

Bifurcation theory of meandering spiral waves

  • Conference paper
  • First Online:
Nonlinear Physics of Complex Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 476))

Abstract

Spiral waves are a typical phenomenon of spatio-temporal pattern formation. They are observed in various biological and chemical systems, for example in the catalysis on platinum surfaces and in the Belousov-Zhabotinsky reaction. We develop a mathematical theory for the Hopf bifurcation from rigidly rotating spiral waves to meandering spiral waves; we prove the transition to drifting spiral waves if the rotation frequency of the rigidly rotating spiral wave is a multiple of the module of the Hopf eigenvalue and we study the parameter-dependence of the drift velocity near the bifurcation from rigidly rotating spiral waves. Furthermore we prove that analogous phenomena occur if a rigidly rotating spiral wave is subjected to external periodic forcing. Our results hold for a general class of reaction-diffusion systems and provide a rigorous mathematical explanation of experiments on the meandering transition in autonomous and periodically forced systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. Bär and M. Eiswirth (1993): Turbulence due to spiral breakup in a continuous excitable medium. Phys. Rev. E 48, 1635–1637.

    Article  ADS  Google Scholar 

  • M. Bär, N. Gottschalk, M. Eiswirth, and G. Ertl (1994): Spiral waves in a surface reaction: Model calculations. J. Chem. Phys. 100(2), 1202–1214.

    Article  ADS  Google Scholar 

  • D. Barkley (1992). Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett. 68(13), 2090–2093.

    Article  ADS  Google Scholar 

  • D. Barkley (1994): Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev. Lett. 72, 164–167.

    Article  ADS  Google Scholar 

  • D. Barkley and I. Kevrekidis (1994): A dynamical systems approach to spiral wave dynamics. Chaos 4(3), 453–460.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • M. Braune and H. Engel (1993a): Compound rotation of spiral waves in a lightsensitive Belousov-Zhabotinsky medium. Chem. Phys. Lett. 204(3,4), 257–264.

    Article  ADS  Google Scholar 

  • M. Braune and H. Engel (1993b): Compound rotation of spiral waves in active media with periodically modulated excitability. Chem. Phys. Lett. 211(6), 534–540.

    Article  ADS  Google Scholar 

  • S.-N. Chow and J. Hale (1982): Methods of Bifurcation Theory. Springer-Verlag, New York, Heidelberg, Berlin.

    MATH  Google Scholar 

  • M. Golubitsky and D. Schaeffer (1985): Singularities and Groups in Bifurcation Theory, volume 1. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • M. Golubitsky, I. Stewart, and D. Schaeffer (1988): Singularities and Groups in Bifurcation Theory, volume 2. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • J. Guckenheimer and P. Holmes (1990): Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, Heidelberg, Berlin.

    Google Scholar 

  • W. Jahnke, W.E. Skaggs, and A.T. Winfree (1989): Chemical vortex dynamics in the Belousov-Zhabotinskii reaction and in the two-variable Oregonator model. J. Chem. Phys. 93, 740–749.

    Article  Google Scholar 

  • W. Jahnke and A.T. Winfree (1991): A survey of spiral-wave behaviour in the Oregonator model. Int. J. Bif. Chaos 1(2), 445–466.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Kapral and K. Showalter ed. (1995): Chemical Waves and Patterns. Kluwer Academic Publishers.

    Google Scholar 

  • A. Karma (1990): Meandering transition in two-dimensional excitable media. Phys. Rev. Lett. 65, 2824–2827.

    Article  ADS  Google Scholar 

  • D.A. Kessler, H. Levine, and W.N. Reynolds (1994): Theory of the spiral core in excitable media. Physica D 70, 115–139.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • E. Lugosi (1989): Analysis of meandering in Zykov kinetics. Physica D 40, 331–337.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • A. S. Mikhailov, V.A. Davydov, and V.S. Zykov (1994): Complex dynamics of spiral waves and motion of curves. Physica D 70, 1–39.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • S.C. Müller, P. Coullet, and D. Walgraef ed. (1994): Focus Issue: From Oscillations to Excitability — A Case Study in Spatially Extended Systems. Chaos 4, 439–568.

    Google Scholar 

  • S.C. Müller and V.S. Zykov (1994): Simple and complex spiral wave dynamics. Phil. Trans. R. Soc. London A 347, 677–685.

    Article  MATH  ADS  Google Scholar 

  • S. Nettesheim, A. von Oertzen, H.H. Rotermund, and G. Ertl (1993): Reaction diffusion patterns in the catalytic CO-oxidation on Pt(110) — front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985.

    Article  ADS  Google Scholar 

  • P. Pelce and J. Sun (1993): On the stability of steadily rotating waves in the freeboundary formulation. Physica D 63, 273–281.

    Article  MATH  ADS  Google Scholar 

  • G.S. Skinner and H.L. Swinney (1991): Periodic to quasiperiodic transition of chemical spiral rotation. Physica D 48, 1–16.

    Article  MATH  ADS  Google Scholar 

  • Zs. Ungvarai-Nagy, J. Ungvarai, and S.C. Müller (1993): Complexity in spiral wave dynamics. Chaos 3(1), 15–19.

    Article  ADS  Google Scholar 

  • A.T. Winfree (1972): Spiral waves of chemical activity. Science 175, 634–636.

    Article  ADS  Google Scholar 

  • A.T. Winfree (1991): Varieties of spiral wave behaviour: an experimentalist’s approach to the theory of excitable media. Chaos 1, 303–334.

    Article  ADS  MathSciNet  Google Scholar 

  • C. Wulff (1996): Theory of meandering and drifting spiral waves in reactiondiffusion systems. Phd-thesis, Freie Universität Berlin, Fachbereich Mathematik und Informatik.

    Google Scholar 

  • V. Zykov, O. Steinbock, and S.C. Müller (1994): External forcing of spiral waves. Chaos 4(3), 509–518.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Parisi Stefan C. Müller Walter Zimmermann

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Wulff, C. (1996). Bifurcation theory of meandering spiral waves. In: Parisi, J., Müller, S.C., Zimmermann, W. (eds) Nonlinear Physics of Complex Systems. Lecture Notes in Physics, vol 476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105437

Download citation

  • DOI: https://doi.org/10.1007/BFb0105437

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61734-1

  • Online ISBN: 978-3-540-70699-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics