Skip to main content

Quantum optics of a single atom

  • Conference paper
  • First Online:
Quantum Future From Volta and Como to the Present and Beyond

Part of the book series: Lecture Notes in Physics ((LNP,volume 517))

  • 229 Accesses

Abstract

In this paper recent experiments performed in our laboratory are reviewed dealing with the investigation of quantum phenomena in the radiation interaction of single atoms. The first part describes experiments in single mode cavities using the one-atom maser or micromaser and in the second part experiments with ion traps are summarized. The latter experiments concentrate on the investigation of resonance fluorescence. In addition new experimental proposals using ultracold atoms in cavities and traps are discussed. In those future experiments the interplay between atomic waves and light waves is important and leads to new phenomena in radiation-atom interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An K., Childs J.J., Dasari R.R., Feld M.S. (1994): Microlaser: a Laser with one Atom in an Optical Resonator. Phys. Rev. Lett. 73, 3375–3378

    Article  ADS  Google Scholar 

  • For a recent review see Arimondo E. (1996): Coherent Trapping in Laser Spectroscopy. Progress in Optics, edited by Wolf E., (Elsevier, Amsterdam) vol. XXXV, 257–354

    Google Scholar 

  • Briegel H.-J., Englert B.-G., Sterpi N., and Walther H. (1994): One-Atom Maser: Statistics of Detector Clicks. Phys. Rev. A 49, 2962–2985

    ADS  Google Scholar 

  • Briegel H.-J., Meyer G.M., and Englert B.-G. (1996): Dynamic Noise Reduction in Multilevel Lasers: Nonlinear Theory and the Pump-Operator Approach. Phys. Rev. A 53, 1143–1159

    ADS  Google Scholar 

  • Pump Operator for Lasers with Multi-Level Excitation. Europhys. Lett. 33, 515–520

    Google Scholar 

  • Cohen-Tannoudji C., Dupont-Roc J., Grynberg G. (1992): Atom-Photon Interactions (J. Wiley & Sons, Inc.), pp. 407–514

    Google Scholar 

  • Cresser J.D., Häger J., Leuchs G., Rateike F.M., Walther H. (1982): Resonance Fluorescence of Atoms in Strong Monochromatic Laser Fields. Dissipative Systems in Quantum Optics, edited by Bonifacio R. and Lugiato L. (Springer Verlag) Topics in Current Physics 27, 21–59

    Google Scholar 

  • Diedrich F., Walther H. (1987): Non-classical Radiation of a Single Stored Ion. Phys. Rev. Lett. 58, 203–206

    Article  ADS  Google Scholar 

  • Filipowicz P., Javanainen J., and Meystre P. (1986): Theory of a Microscopic Maser. Phys. Rev. A 34, 3077–3087.

    ADS  Google Scholar 

  • Gheri K.M. and Walls D.F. (1992): Squeezed Lasing without Inversion or Light Amplification by Coherence. Phys. Rev. A 45, 6675–6686

    ADS  Google Scholar 

  • Ritsch H. and Marte M.A.M. (1993): Quantum Noise in Raman Lasers: Effects of Pump Bandwidth and Super-and Sub-Poissonian Pumping. Phys. Rev. A 47, 2354–2365

    ADS  Google Scholar 

  • Gibbs H.M. and Venkatesan T.N.C. (1976): Direct Observation of Fluorescence Narrower than the Natural Linewidth. Opt. Comm. 17, 87–94

    Article  ADS  Google Scholar 

  • Ginzel C., Briegel H.J., Martini U., Englert B.-G., and Schenzle A. (1993): Quantum Optical Master Equations: The One-Atom Laser, Phys. Rev. A 48, 732–738.

    ADS  Google Scholar 

  • Hartig W., Rasmussen W., Schieder R., Walther H. (1976): Study of the Frequency Distribution of the Fluorescent Light Induced by Monochromatic Excitation. Z. Physik A278, 205–210

    ADS  Google Scholar 

  • Heitler W. (1954): The Quantum Theory of Radiation, (Oxford University Press, Third Edition) 196–204

    Google Scholar 

  • Höffges J.T., Baldauf H.W., Eichler T., Helmfrid S.R., and Walther H. (1997): Heterodyne Measurement of the Fluorescent Radiation of a Single Trapped Ion. Opt. Com. 133, 170–174

    Article  ADS  Google Scholar 

  • Höffges J.T., Baldauf H.W., Lange W., and Walther H.: Heterodyne Measurement of the Resonance Fluorescence of a Single Ion. Journal of Modern Optics, in print

    Google Scholar 

  • Jakeman E., Pike E. R., Pusey P.N., and Vaugham J.M. (1977): The Effect of Atomic Number Fluctuations on Photon Antibunching in Resonance Fluorescence. J. Phys. A 10, L257–L259

    ADS  Google Scholar 

  • Jessen P.S., Gerz C., Lett P.D., Phillipps W.D., Rolston S.L., Spreuuw R.J.C, and Westbrook C.I. (1992): Observation of Quantized Motion of Rb Atoms in an Optical Field. Phys. Rev. Lett. 69, 49–52

    Article  ADS  Google Scholar 

  • Khazanov A.M., Koganov G.A., and Gordov E.P. (1990): Macroscopic Squeezing in Three-Level Laser. Phys. Rev. A 42, 3065–3069

    ADS  Google Scholar 

  • Ralph T.C. and Savage C.M. (1991): Squeezed Light from a Coherently Pumped Four-Level Laser, Phys. Rev. A 44, 7809–7814

    ADS  Google Scholar 

  • Ritsch H., Zoller P., Gardiner C.W., and Walls D.F. (1991): Laser Light by Dynamic Pump-Noise Suppression. Phys. Rev. A 44, 3361–3364

    ADS  Google Scholar 

  • Kimble H. J., Dagenais M., and Mandel L. (1977): Photon Antibunching in Resonance Fluorescence. Phys. Rev. Lett. 39, 691–695

    Article  ADS  Google Scholar 

  • Kimble H. J., Dagenais M., and Mandel L. (1978): Multiatom and Transit-Time Effects in Photon Correlation Measurements in Resonance Fluorescence. Phys. Rev. A 18, 201–207

    ADS  Google Scholar 

  • Dagenais M., Mandel L. (1978): Investigation of Two-Atom Correlations in Photon Emissions from a Single Atom. Phys. Rev. A 18, 2217–2218

    ADS  Google Scholar 

  • Kimble H. J., Carnal O., Georgiades N., Mabuchi H., Polzik E.S., Thompson R.J., and Turchette Q.A. (1995): Quantum Optics with Strong Coupling. Atomic Physics 14, 314–335, edited by Wineland D.J., Wieman C.E., Smith S.J. (American Institute of Physics, New York)

    Google Scholar 

  • Löffler M., Englert B.-G., and Walther, H. (1996): Testing a Bell-Type Inequality with a Micromaser. Appl. Phys. B 63, 511–516

    ADS  Google Scholar 

  • Löffler M., Meyer G.M., and Walther, H. (1997): Spectral Properties of the One-Atom Maser. Phys. Rev. A 55, 3923–3930

    ADS  Google Scholar 

  • Löffler M., Meyer G.M., Schröder, M., Scully M.O., and Walther H. (1997): Quantum Theory of the Mazer: II. Extensions and Experimental Conditions. Phys. Rev. A, in print

    Google Scholar 

  • Löffler M., Meyer G.M., and Walther, H.: One Atom Laser with Quantized Centre-of-Mass Motion, to be published

    Google Scholar 

  • Loudon R. (1980): Non-Classical Effects in the Statistical Properties of Light. Rep. Progr. Phys. 43, 913–949

    Article  ADS  MathSciNet  Google Scholar 

  • Lugiato L.A., Scully M.O., and Walther H. (1987): Connection between Microscopic and Macroscopic Maser Theory. Phys. Rev. A 36, 740–743.

    ADS  Google Scholar 

  • Meschede D., Walther H., and Müller G. (1985): The One-Atom Maser, Phys. Rev. Lett. 54, 551–554

    Article  ADS  Google Scholar 

  • Meyer G.M., Briegel H.-J., and Walther H. (1997): Ion-Trap Laser. Europhys. Lett. 37, 317–322

    Article  ADS  Google Scholar 

  • Meyer G.M., Löffler M., and Walther H. (1997): Spectrum of the Ion-Trap Laser. Phys. Rev. A 56, R1099–R1102

    ADS  Google Scholar 

  • Meyer G.M., Scully, M.O., and Walther H. (1997): Quantum Theory of the Mazer: I. General Theory, Phys. Rev. A, in print

    Google Scholar 

  • Meystre P. (1992): Cavity Quantum Optics and the Quantum Measurement Process. Progress in Optics, edited by Wolf E. (Elsevier Science Publishers, New York), Vol. 30, 261–355

    Google Scholar 

  • Mollow B.R. (1969): Power Spectrum of Light Scattered by Two-Level Systems. Phys. Rev. 188, 1969–1975

    Article  ADS  Google Scholar 

  • Mu Y. and Savage C.M. (1992): One-Atom Lasers. Phys. Rev. A 46, 5944–5954

    ADS  Google Scholar 

  • Pellizzari T. and Ritsch H.J. (1994): Photon Statistics of the Three-Level One-Atom Laser, Mod. Opt. 41, 609–623; Preparation of Stationary Fock States in a One-Atom Raman Laser. Phys. Rev. Lett. 72, 3973–3976; Horak P., Gheri K.M., and Ritsch H. (1995): Quantum Dynamics of a Single-Atom Cascade Laser. Phys. Rev. A 51, 3257–3266

    Article  ADS  Google Scholar 

  • Raimond J.M., Brune M., Davidovich L., Goy P., and Haroche S. (1989): The Two-Photon Rydberg Atom Micromaser. Atomic Physics 11, 441–445

    Google Scholar 

  • Raithel G., Benson O., and Walther H. (1995): Atomic Interferometry with the Micromaser. Phys. Rev. Lett. 75, 3446–3449

    Article  ADS  Google Scholar 

  • Raithel G., Wagner C., Walther H., Narducci L.M., and Scully M.O. (1994): The Micromaser: A Proving Ground for Quantum Physics. Advances in Atomic, Molecular, and Optical Physics, Supplement 2, edited by Berman P., (Academic Press, New York) 57–121.

    Google Scholar 

  • Ramsey N.F. (1956): Molecular Beams. (Clarendon Press, Oxford), pp. 124–134

    Google Scholar 

  • Rempe G., Walther H., and Klein N. (1987): Observation of Quantum Collapse and Revival in the One-Atom Maser. Phys. Rev. Lett. 58, 353–356

    Article  ADS  Google Scholar 

  • Rempe G., Schmidt-Kaler F., and Walther H. (1990): Observation of Sub-Poissonian Photon Statistics in a Micromaser. Phys. Rev. Lett. 64, 2783–2786

    Article  ADS  Google Scholar 

  • Rempe G. and Walther H. (1990): Sub-Poissonian Atomic Statistics in a Micromaser. Phys. Rev. A 42, 1650–1655

    ADS  Google Scholar 

  • Schrama C. A., Peik E., Smith W. W., and Walther H. (1993): Novel Miniature Ion Traps. Opt. Comm. 101, 32–36

    Article  ADS  Google Scholar 

  • Schröder M., Vogel K., Schleich W.P., Scully M.O., and Walther H. (1997): Quantum Theory of the Mazer: III. Spectrum. Phys. Rev. A., in print.

    Google Scholar 

  • Schuda F., Stroud C., Jr., Hercher M. (1974): Observation of the Resonant Stark Effect at Optical Frequencies. J. Phys. B7, L198–L202

    ADS  Google Scholar 

  • Scully M.O., Meyer G.M., and Walther H. (1996): Induced Emission due to the Quantized Motion of Ultra-Cold Atoms Passing through a Micromaser Cavity. Phys. Rev. Lett. 76, 4144–4147

    Article  ADS  Google Scholar 

  • Short R. and Mandel L. (1983): Observation of Sub-Poissonian Photon Statistics. Phys. Rev. Lett. 51, 384–387.

    Article  ADS  Google Scholar 

  • Wagner C., Brecha R.J., Schenzle A., and Walther H. (1993): Phase Diffusion, Entangled States and Quantum Measurements in the Micromaser. Phys. Rev. A 47, 5068–5079

    ADS  Google Scholar 

  • Wagner C., Schenzle A., and Walther, H. (1994): Atomic Waiting-Times and Correlation Functions. Optics Communications 107, 318–326.

    Article  ADS  Google Scholar 

  • Walls D.F. (1979): Evidence for the Quantum Nature of Light. Nature 280, 451–454

    Article  ADS  Google Scholar 

  • Walther H. (1975): Atomic Fluorescence Induced by Monochromatic Excitation. Laser Spectroscopy, Proceedings of the 2nd Conference, Megève, France, ed. by Haroche S., Reborg-Peyronla J.C., Hänsch T.W., Harris S.E., Lecture Notes in Physics (Springer) 43, 358–369

    Google Scholar 

  • Walther H., (1992): Experiments on Cavity Quantum Electrodynamics. Phys. Reports 219, 263–281

    Article  ADS  Google Scholar 

  • Wu F. Y., Grove R.E., Ezekiel S. (1975): Investigation of the Spectrum of Resonance Fluorescence Induced by a Monochromatic Field. Phys. Rev. Lett. 35, 1426–1429; Grove R.E., Wu F. Y., Ezekiel S. (1977): Measurement of the Spectrum of Resonance Fluorescence from a Two-Level Atom in an Intense Monochromatic Field. Phys. Rev. A 15, 227–233

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe Blanchard Arkadiusz Jadczyk

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Walther, H. (1999). Quantum optics of a single atom. In: Blanchard, P., Jadczyk, A. (eds) Quantum Future From Volta and Como to the Present and Beyond. Lecture Notes in Physics, vol 517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105348

Download citation

  • DOI: https://doi.org/10.1007/BFb0105348

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65218-2

  • Online ISBN: 978-3-540-49482-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics